Skip to main content

Magic-Angle 13C NMR Analysis of Hard Wheat Flour and Dough

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 302))

Abstract

Samples of hard wheat flour and dough are analyzed by magic-angle spinning 13C NMR spectroscopy. Cross-polarization magic-angle spinning (CPMAS) 13C NMR spectra of the dry flour allow its starch and protein content to be accurately measured. These two components are phase-separated. Spectra of hydrated hard wheat doughs are collected under both CPMAS and single-pulse carbon with low-power 1H decoupling conditions. The former report on the macromolecular components of the dough, while the latter reveal small molecules which are solubilized by the water. Results of the present study are interpreted as indicating that the protein is largely unaffected by the added water and remains phased-separated from the starch, while water causes significant changes in polymer dynamics of the starch component.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.A. Matz, Modem baking technology, Scientific American November: 122 (1984).

    Google Scholar 

  2. D.L. Laidman and R.G. Wyn Jones, eds., “Recent Advances in the Biochemistry of Cereals,” Academic Press, New York (1979).

    Google Scholar 

  3. W.M. Shirley and R.G. Bryant, Proton-nuclear spin relaxation and molecular dynamics in the lysozyme-water system, J. Am. Chem. Soc. 104:2910 (1982).

    Article  CAS  Google Scholar 

  4. W.B. Wise and P.E. Pfeffer, Measurement of cross-relaxation effects in the proton NMR of water in fibrous collagen and insoluble elastin, Macromolecules 20:1550 (1987).

    Article  CAS  Google Scholar 

  5. R.A. Komoroski, ed., “High Resolution NMR Spectroscopy of Synthetic Polymers in Bulk,” VCH, Deerfield Beach (1986).

    Google Scholar 

  6. V.D. Fedotov and H. Schneider, “Structure and Dynamics of Bulk Polymers by NMR-Methods,” Springer-Verlag, Heidelberg (1989).

    Book  Google Scholar 

  7. J. Schaefer, E.O. Stejskal, R.A. McKay, and W.T. Dixon, Molecular motion in polycarbonates by dipolar rotational spin-echo 13C NMR, Macromolecules 17:1479 (1984).

    Article  CAS  Google Scholar 

  8. J. Schaefer and E.O. Stejskal, Carbon-13 nuclear magnetic resonance of polymers spinning at the magic angle, J. Am. Chem. Soc. 98:1031 (1976).

    Article  CAS  Google Scholar 

  9. R.H. Atalla, J.C. Gast, D.V. Sindorf, V.J. Bartuska, and G.E. Maciel, 13C NMR spectra of cellulose polymorphs, J. Am. Chem. Soc. 102:3249 (1980).

    Article  CAS  Google Scholar 

  10. W.L. Earl and D.L. VanderHart, High resolution magic angle sample spinning 13C NMR of solid cellulose I, J. Am. Chem. Soc. 102:3251 (1984).

    Article  Google Scholar 

  11. J. Schaefer, M.D. Sefcik, E.O. Stejskal, R.A. McKay, and P.L. Hall, Characterization of the catabolic transformation of lignin in culture using magic-angle carbon-13 nuclear magnetic resonance, Macromolecules 14:557 (1980).

    Article  Google Scholar 

  12. G.E. Maciel, J.F. Haw, D.H. Smith, B.C. Gabrielson, and G.R. Hatfield, Carbon-13 nuclear magnetic resonance of herbaceous plants and their components, using cross polarization and magic-angle spinning, J. Agric. Food Chem. 33:185 (1985).

    Article  CAS  Google Scholar 

  13. N.G. Lewis, J. Newman, G. Just, and J. Ripmeister, Determination of bonding patterns of 13C specifically enriched dehydrogenatively polymerized lignin in solution and solid state, Macromolecules 20:1752 (1987).

    Article  CAS  Google Scholar 

  14. R. Botto, Synthesis and characterization of [13C] lignins. Macromolecules 21:1246 (1988).

    Article  CAS  Google Scholar 

  15. T. Zlotnik-Mazori and R.E. Stark, Nuclear magnetic resonance studies of cutin, an insoluble plant polyester, Macromolecules 21:2412 (1988).

    Article  CAS  Google Scholar 

  16. R.E. Stark, T. Zlotnik-Mazori, D.M. Ferrantello, and J.R. Garbow, Molecular structure and dynamics of intact plant polyesters: solid-state NMR studies, in: “Plant Cell Wall Polymers, Biogenesis and Biodegradation,” N.G. Lewis and M.G. Paice, eds., ACS, Washington, DC (1989).

    Google Scholar 

  17. J.R. Garbow, L.M. Ferrantello, and R.E. Stark, 13C nuclear magnetic resonance study of suberized potato cell wall, Plant Physiology 90:783 (1989).

    Article  CAS  Google Scholar 

  18. E.O. Stejskal, J. Schaefer, and T.R. Steger, High-resolution 13C nuclear magnetic resonance in solids, Faraday Disc. Chem. Soc. 13:56 (1979).

    CAS  Google Scholar 

  19. E.O. Stejskal, J. Schaefer, M.D. Sefcik, and R.A. McKay, Magic-angle carbon-13 nuclear magnetic resonance study of the compatibility of solid polymeric blends, Macromolecules 14:275 (1981).

    Article  CAS  Google Scholar 

  20. J. Schaefer, J.R. Garbow, E.O. Stejskal, and J. Lefalar, Plasticization of butvar resins, Macromolecules 20:1271 (1987).

    Article  CAS  Google Scholar 

  21. A. Pines, M.G. Gibby, and J.S. Waugh, Proton-enhanced NMR of dilute spins in solids, J. Chem. Phys. 59:569 (1973).

    Article  CAS  Google Scholar 

  22. E.R. Andrew, A. Bradbury, and R.G. Eades, Nuclear magnetic resonance spectra from a crystal rotated at high speed, Nature 182:1659 (1958).

    Article  CAS  Google Scholar 

  23. I.J. Lowe, Free induction decays of rotating solids, Phvs. Rev. Lett. 2:285 (1959).

    Article  CAS  Google Scholar 

  24. J.R. Havens and D.L. VanderHart, Morphology of poly(ethylene terephthalate) fibers as studied by multiple-pulse 1H NMR, Macromolecules 18:1663 (1985).

    Article  CAS  Google Scholar 

  25. W. Rothwell and J. Waugh, Transverse relaxation of dipolar coupled spin systems under r.f. irradiation: detecting motions in solids, J. Chem. Phvs. 74:2721 (1981).

    Article  CAS  Google Scholar 

  26. J.R. Garbow, J. Schaefer, E.O. Stejskal, and G.S. Jacob, Protein dynamics from chemical shift and dipolar rotational spin-echo 15N NMR, Biochemistry 28:1362 (1989).

    Article  CAS  Google Scholar 

  27. J.R. Garbow and J. Schaefer, J. Agric. Food Chem.. in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Garbow, J.R., Schaefer, J. (1991). Magic-Angle 13C NMR Analysis of Hard Wheat Flour and Dough. In: Levine, H., Slade, L. (eds) Water Relationships in Foods. Advances in Experimental Medicine and Biology, vol 302. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0664-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0664-9_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0666-3

  • Online ISBN: 978-1-4899-0664-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics