Skip to main content

Mechanism of Misoprostol Stabilization in Hydroxypropyl Methylcellulose

  • Chapter
Water Relationships in Foods

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 302))

Abstract

The stability of misoprostol oil is significantly improved in a hydroxypropyl methylcellulose (HPMC) dispersion (1:100).1 In order to understand the enhanced stability of misoprostol oil in HPMC, the physical state of misoprostol oil in HPMC films was investigated using differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and transmission IR (TIR). Further, to determine the effect of polymer structure and the mobility of both water and misoprostol on misoprostol stability, the rate of misoprostol degradation was investigated in the misoprostol/HPMC dispersion (1:100) at 55°C. The water sorption isotherm of the dispersion at 55°C was determined, at seven different relative humidities, ranging from zero to 81%. The DSC and DMA measurements indicated that misoprostol oil, up to 29% in dry weight, is molecularly dispersed in the glassy HPMC. The TIR studies showed no evidence of complexation between misoprostol and HPMC. Stability studies of the misoprostol/HPMC (1:100) dispersion indicated that the first-order rate constants for misoprostol degradation increased in a concave-up fashion as the water content of the dispersion increased. Below two percent water content, the rate of misoprostol degradation was found to be minimal. Overall, it is suggested that misoprostol is stabilized in the dispersion by being molecularly dispersed in HPMC. Further, the glassy state of HPMC should reduce the mobility of misoprostol and water, leading to a minimal rate of degradation for misoprostol at low moisture levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.R. Sanvordeker, Stabilization of 16-oxygenated prostanoic acid derivatives, U.S. pat. 4,301,146 (to G.D. Searle & Co.) (1981).

    Google Scholar 

  2. L. Greenspan, Humidity fixed points of binary saturated aqueous solutions, J. Research National Bureau Standards — A. Physics and Chemistry 81A:89 (1977).

    Article  Google Scholar 

  3. SAS Institute, “SAS User’s Guide: Statistics,” Version 5 Edition, SAS Institute, Cary, NC (1985).

    Google Scholar 

  4. A.S. Michaels, W.R. Vieth, and J.A. Barrie, Diffusion of gases in polyethylene terephthalate, J. Appl. Physics 34:13 (1963).

    Article  CAS  Google Scholar 

  5. N. Muruganandam and D.R. Paul, Gas sorption and transport in miscible blends of tetramethyl bisphenol-A polycarbonate and polystyrene, J. Polym. Sci. Part B. Polym. Phys. 25:2315 (1987).

    Article  CAS  Google Scholar 

  6. D.R. Paul, Gas sorption and transport in glassy polymers, Ber. Bunsenges. Phys. Chem. 83:294 (1979).

    Article  CAS  Google Scholar 

  7. C. van den Berg, Water sorption equilibria and other water-starch interactions; a physico-chemical approach, Doctoral Thesis, Agricultural University, Wageningen (1981).

    Google Scholar 

  8. K. Kowalski, M. Beno, C. Bergstrom, and H. Gaud, The application of multiresponse estimation to drug stability studies, Drug Dev. Ind. Pharm. 13:2823 (1987).

    Article  CAS  Google Scholar 

  9. F. Gejl-Hansen and J.M. Flink, Freeze-dried carbohydrate containing oil-in-water emulsions: microstructure and fat distribution, J. Food Sci. 42:1049 (1977).

    Article  CAS  Google Scholar 

  10. A.O. Okhamafe and P. York, Interaction phenomena in some aqueous-based tablet coating polymer systems, Pharm. Res. 2:19 (1985).

    Article  Google Scholar 

  11. A.O. Okhamafe and P. York, Studies of interaction phenomena in aqueous-based film coatings containing soluble additives using thermal analysis techniques, J. Pharm. Sci. 77:438 (1988).

    Article  CAS  Google Scholar 

  12. C.G. Biliaderis, C.M. Page, T.J. Maurice, and B.O. Juliano, Thermal characterization of rice starches: a polymeric approach to phase transitions of granular starch, J. Agric. Food Chem. 34:6 (1986).

    Article  CAS  Google Scholar 

  13. R. Kaur, D.J.W. Grant, and T. Eaves, Comparison of polyethylene glycol and polyoxyethlylene stearate as excipients for solid dispersion systems of griseofulvin and tolbutamide I: phase equilibria, J. Pharm. Sci. 69:1317 (1980).

    Article  CAS  Google Scholar 

  14. T.T. Kararli, T.E. Needham, C.J. Ceul, and P.M. Finnegan, Solid-state interaction of magnesium oxide and ibuprofen to form a salt, Pharm. Res. 6:804 (1989).

    Article  CAS  Google Scholar 

  15. H.L. Fung and M.J. Cho, Molecular interaction between E-prostaglandins and selected polymers and its potential utilization in oral dosage form design, J. Pharm. Sci. 67:971 (1978).

    Article  CAS  Google Scholar 

  16. H. Levine and L. Slade, Water as a plasticizer: physico-chemical aspects of low-moisture polymeric systems, in: “Water Science Reviews,” Vol. 3, F. Franks, ed., Cambridge University Press, Cambridge (1988).

    Google Scholar 

  17. G. Zografi and M.J. Kontny, The interactions of water with cellulose-and starch-derived pharmaceutical excipients, Pharm. Res. 3:187 (1986).

    Article  Google Scholar 

  18. B.P. Fish, Diffusion and thermodynamics of water in potato starch gel, in: “Fundamental Aspects of the Dehydration of Food Stuffs,” Soc. Chem. Ind. (SCI), London (1958).

    Google Scholar 

  19. N.L. Thomas and A.H. Windle, A deformation model for case II diffusion, Polymer 21:613 (1980).

    Article  CAS  Google Scholar 

  20. T.T. Wang and T.K. Kwei, Diffusion in glassy polymers. Reexamination of vapor sorption data, Macromolecules 6:919 (1973).

    Article  CAS  Google Scholar 

  21. R.A. Assink, Investigation of the dual mode sorption of ammonia in polystyrene by NMR, J. Polym. Sci.: Polym. Phys. Ed. 13:1665 (1975).

    Article  CAS  Google Scholar 

  22. W.J. Koros and D.R. Paul, Observations concerning the temperature dependence of the Langmuir sorption capacity of glassy polymers, J, Polvm. Sci.: Polvm. Phvs. Ed. 19:1655 (1981).

    Article  CAS  Google Scholar 

  23. R.J. Pace and A. Datyner, The temperature dependence of the Languir capacity factor in glassy polymers, J. Polym. Sci.: Polym. Phys. Ed. 19:1657 (1981).

    Article  CAS  Google Scholar 

  24. T.T. Kararil, J. Hurlbut, and T. Needham, Glass-rubber transitions of cellulose polymers by dynamic mechanical analysis, J. Pharm. Sci., in press (1989).

    Google Scholar 

  25. T. Murayama, Dynamic mechanical analysis of polymeric materials, in: “Material Science Monographs,” Vol. 1, T. Murayama, ed., Elsevier, Amsterdam (1978).

    Google Scholar 

  26. P.S. Taoukis, A. El Meskine, and T.P. Labuza, Moisture transfer and shelf life of packaged foods, in: “Food and Packaging Interactions,” J.H. Hotchkiss, ed., ACS Symposium Series No. 365, Am. Chem. Soc., Washington, DC (1988).

    Google Scholar 

  27. E.C. To and J.M. Flink, ‘Collapse’, a structural transition in freeze dried carbohydrates, J. Food Technol. 13:583 (1978).

    Article  CAS  Google Scholar 

  28. J. Flink and M. Karel, Retention of organic volatiles in freeze-dried solutions of carbohydrates, J. Agric. Food Chem. 18:295 (1970).

    Article  CAS  Google Scholar 

  29. J. Chirife, M. Karel, and J.M. Flink, Mechanisms of retention of organic volatiles in freeze-dried systems, J. Food Technol. 7:199 (1972).

    Google Scholar 

  30. J. Chirife, M. Karel, and J.M. Flink, Studies on mechanisms of retention of volatiles in freeze-dried food models: the system PVP-n-propanol, J. Food Sci. 38:671 (1973).

    Article  Google Scholar 

  31. J. Chirife and M. Karel, Effect of structure disrupting treatments on volatile release from freeze-dried maltose, J. Food Technol. 9:13 (1974).

    Article  Google Scholar 

  32. H. Levine and L. Slade, A polymer physico-chemical approach to the study of commercial starch hydrolysis products (SHPs), Carbohydr. Polym. 6:213 (1986).

    Article  CAS  Google Scholar 

  33. T.T. Kararli and T. Catalano, Stabilization of misoprostol with HPMC against degradation by water, Pharm. Res.. in press (1989).

    Google Scholar 

  34. T.T. Kararli, T.E. Needham, C.J. Seul, P.M. Finnegan, M.I. Hidvegi, and J. Hurlbut, Physical state of misoprostol in hydroxypropyl methylcellulose films, Pharm. Res.. in press (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kararli, T.T., Catalano, T., Needham, T.E., Finnegan, P.M. (1991). Mechanism of Misoprostol Stabilization in Hydroxypropyl Methylcellulose. In: Levine, H., Slade, L. (eds) Water Relationships in Foods. Advances in Experimental Medicine and Biology, vol 302. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0664-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0664-9_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0666-3

  • Online ISBN: 978-1-4899-0664-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics