Skip to main content

A Taurine Receptor Model: Taurine-Sensitive Olfactory Cells in the Lobster

  • Chapter
The Biology of Taurine

Abstract

Taurine is a widely distributed amino acid which has been associated with a broad range of physiological actions, particularly in excitable tissues. These include, for example, a role in heart function (17), retinal function (24,27,31,32), and neural development (9,38,39). In addition, neurophysiological and biochemical evidence has suggested that taurine acts as an inhibitory neurotransmitter or neuromodulator in the central nervous system (21,26,29,30). In no case, however, has the specific function of taurine been elucidated, and progress towards deciphering its role in these various systems has been considerably retarded by the lack of selective agonists and antagonists. A major factor which has hampered development of such probes has been the absence of a receptor model that is specifically sensitive to taurine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ache, B.W., Gleeson, R.A., and Thompson, H.D., in press, Mechanisms of interaction between odorants at olfactory receptor cells, in: “Proceedings of the Ninth International Symposium on Olfaction and Taste”, The New York Academy of Sciences, New York.

    Google Scholar 

  2. Adamek, G.D., Gesteland, R.C., Mair, R.G., and Oakley, B., 1984, Transduction physiology of olfactory receptor cilia, Brain Res., 310:87–97.

    Article  PubMed  CAS  Google Scholar 

  3. Anderson, P.A.V., and Ache, B.W., 1985, Voltage-and current-clamp recordings of the receptor potential in olfactory receptor cells in situ, Brain Res., 338:273–280.

    Article  PubMed  CAS  Google Scholar 

  4. Carr, W.E.S., Ache, B.W., and Gleeson, R.A., 1987, Chemoreceptors of crustaceans: Similarities to receptors for neuroactive substances in internal tissues, Environ. Health Perspect., in press.

    Google Scholar 

  5. Curtis, D.R., Holsi, L., and Johnston, G.A.R., 1968, A pharmacological study of the depression of spinal neurons by glycine and related amino acids, Exp. Brain Res., 6:1–18.

    Article  PubMed  CAS  Google Scholar 

  6. Derby, C.D., and Atema, J., 1982, Narrow-spectrum chemoreceptor cells in the walking legs of the lobster Homarus americanus: Taste specialists, J. Comp. Physiol., 146:181–189.

    Article  CAS  Google Scholar 

  7. Fuzessery, Z.M., Carr, W.E.S., and Ache, B.W., 1978, Antennular chemosensitivity in the spiny lobster, Panulirus argus: Studies of taurine sensitive receptors, Biol. Bull., 154:226–240.

    Article  CAS  Google Scholar 

  8. Gant, Z.N., and Nauss, C.B., 1976, Uptake of taurine by human blood platelets: A possible model of the brain, in: “Taurine”, R.J. Huxtable and A. Barbeau, eds., Raven Press, New York, pp. 99–121.

    Google Scholar 

  9. Gaull, G.E., and Rassin, D.K., 1979, Taurine and brain development: Human and animal correlates, in: “Neural Growth and Differentiation”, E. Meisami and M.A.B. Brazier, eds., Raven Press, New York, pp. 461–477.

    Google Scholar 

  10. Gleeson, R.A., and Ache, B.W., 1985, Amino acid suppression of taurine-sensitive chemosensory neurons, Brain Res., 335:99–107.

    Article  PubMed  CAS  Google Scholar 

  11. Grünert, U., and Ache, B. W., 1987, Fine structure of the olfactory (aesthetasc) sensilla of the spiny lobster, Chemical Senses, in press.

    Google Scholar 

  12. Haas, H.L., and Hosli, L., 1979, The depression of brainstem neurons by taurine and its interaction with strychnine and bicuculline, Brain Res., 52:399–402.

    Article  Google Scholar 

  13. Holopainen, I., and Kontro, P., 1984, Taurine and hypotaurine transport by a single system in cultured neuroblastoma cells, Acta Physiol. Scand., 122:381–386.

    Article  PubMed  CAS  Google Scholar 

  14. Hruska, R.E., Huxtable, R.J., and Yamamura, H.I., 1978, High affinity, temperature-sensitive and sodium-dependent transport of taurine in rat brain, in: “Taurine and Neurological Disorders”, A. Barbeau and R.J. Huxtable, eds., Raven Press, New York, pp. 109–117.

    Google Scholar 

  15. Hruska, R E., Padjen, A., Bressler, R., and Yamamura, H.I., 1978, Taurine: Sodium-dependent, high-affinity transport into rat brain synaptosomes, Mol. Pharmacol., 14:77–85.

    PubMed  CAS  Google Scholar 

  16. Huxtable, R.J., Laird, H.E., and Lippincott, S.E., 1979, The transport of taurine in the heart and the rapid depletion of tissue taurine content by guanidinoethylsulfonate, J. Pharmacol. Exp. Ther., 211:465–471.

    PubMed  CAS  Google Scholar 

  17. Huxtable, R.J., and Sebring, L., 1983, Cardiovascular actions of taurine, in: “Sulfur Amino Acids: Biochemical and Clinical Aspects”, K. Kuriyama, R. Huxtable, and H. Iwata, eds., Alan R. Liss, New York, pp. 5–37.

    Google Scholar 

  18. Johnson, B.R., and Atema, J., 1983, Narrow-spectrum chemoreceptor cells in the antennules of the American lobster, Neurosci. Lett., 45:145–150.

    Article  Google Scholar 

  19. Johnson, B.R., Voigt, R., Borroni, P.F., and Atema, J., 1984, Response properties of lobster chemoreceptors: Tuning of primary taste neurons in walking legs, J. Comp. Physiol., 155:593–604.

    Article  CAS  Google Scholar 

  20. Kontro, P., 1984, Comparison of taurine, hypotaurine and ß-alanine uptake in brain synaptosomal preparations from developing and adult mouse, Int. J. Devl. Neuroscience, 2:465–470.

    Article  CAS  Google Scholar 

  21. Kontro, P., Korpi, E.R., Oja, O.S., and Oja, S.S., 1984, Modulation of noradrenaline uptake and release by taurine in rat cerebral slices, Neuroscience, 13:663–666.

    Article  PubMed  CAS  Google Scholar 

  22. Kurachi, M., Yoshihara, K., and Aihara, H., 1983, Effect of taurine on depolarizations induced by L-glutamate and other excitatory amino acids in the isolated spinal cord of the frog, Japan. J. Pharmacol., 33:1247–1254.

    Article  CAS  Google Scholar 

  23. Laverack, M.S., and Ardill, D.J., 1965, The innervation of the aesthetasc hairs of Panulirus argus, Quart. J. Micr. Sci., 106:45–60.

    Google Scholar 

  24. Lin, C.T., Song, G.X., and Wu, J.Y., 1985, Is taurine a neurotransmitter in rabbit retina, Brain Res., 337:393–398.

    Article  Google Scholar 

  25. Lombardini, J.B., and Prien, S.D., 1983, Taurine binding by rat retinal membranes, Exp Eye Res., 37:239–250.

    Article  PubMed  CAS  Google Scholar 

  26. Mandel, P., and Pasantes-Morales, H., 1978, Taurine in the nervous system, in: “Reviews of Neuroscience”, S. Ehrenpreis and I. Kopin, eds., Vol. 3, Raven Press, New York, pp. 157–193.

    Google Scholar 

  27. Mandel, P., Pasantes-Morales, H., and Urban, P.F., 1976, Taurine, a putative transmitter in retina, in: “Transmitters in the Visual Process”, S.L. Bonting, ed., Pergamon Press, New York, pp. 89–105.

    Google Scholar 

  28. Menco, B. Ph. M., 1980, Qualitative and quantitative freeze-fracture studies on olfactory and nasal respiratory epithelial surfaces of frog, ox, rat and dog. II. Cell apices, cilia and microvilli, Cell Tissue Res., 211:5–29.

    PubMed  CAS  Google Scholar 

  29. Okamoto, K., Kimura, H., and Sakai, Y., 1983, Evidence for taurine as an inhibitory neurotransmitter in cerebellar stellate interneurons: Selective antagonism by TAG (6-aminomethyl-3-methyl-4H,1,2,4-benzothiadiazine-l,l-dioxide), Brain Res., 265:163–168.

    Article  PubMed  CAS  Google Scholar 

  30. Oja, S.S., and Kontro, P., 1983, Taurine, in: “Handbook of Neurochemistry”, A. Lajtha, ed., Vol. 3, Plenum Press, New York, pp. 501–533.

    Google Scholar 

  31. Pasantes-Morales, H., Ademe, R.M., and Quesada, O., 1981, Protective effect of taurine on the light-induced disruption of isolated frog outer segments, J. Neurosci. Res., 6:337–348.

    Article  PubMed  CAS  Google Scholar 

  32. Pasantes-Morales, H., and Cruz, C., 1985, Taurine and hypotaurine inhibit light-induced lipid peroxidation and protect rod outer segment structure, Brain Res., 330:154–157.

    Article  PubMed  CAS  Google Scholar 

  33. Quesada, O., Huxtable, R.J., and Pasantes-Morales, H., 1984, Effect of guanidinoethane sulfonate on taurine uptake by rat retina, J. Neurosci. Res., 11:179–186.

    Article  PubMed  CAS  Google Scholar 

  34. Rhein, L.D., and Cagan, R.H., 1980, Biochemical studies of olfaction: Isolation, characterization, and odorant binding activity of cilia from rainbow trout olfactory rosettes, Proc. Natl. Acad. Sci. USA, 77:4412–4416.

    Article  PubMed  CAS  Google Scholar 

  35. Schaffer, S.W., Kulakowski, E.C., and Kramer, J.H., 1982, Taurine transport by reconstituted membrane vesicles, in: “Taurine in Nutrition and Neurology, Adv. Exp. Med.”, R. Huxtable and H. Pasantes-Morales, eds., Vol. 139, Plenum Press, New York, pp. 143–160.

    Chapter  Google Scholar 

  36. Segawa, T., Inoue, A., Ochi, T., Nakata, Y., and Nomura, Y., 1982, Specific binding of taurine in central nervous system, in: “Taurine in Nutrition and Neurology, Adv. Exp. Med.”, R. Huxtable and H. Pasantes-Morales, eds., Vol. 139, Plenum Press, New York, pp. 311–324.

    Chapter  Google Scholar 

  37. Shepheard, P., 1974, Chemoreception in the antennule of the lobster, Homarus americanus, Mar. Behav. Physiol., 2:261–273.

    Article  CAS  Google Scholar 

  38. Sturman, J.A., Moretz, R.C., French, J.H., and Wisniewski, H.M., 1985, Taurine deficiency in the developing cat: Persistence of the cerebellar external granule cell layer, J. Neurosci. Res., 13:405–416.

    Article  PubMed  CAS  Google Scholar 

  39. Sturman, J.A., Moretz, R.C., French, J.H., and Wisniewski, H.M., 1985, Postnatal taurine deficiency in the kitten results in a persistence of the cerebellar external granule cell layer: Correction by taurine feeding, J. Neurscl. Res., 13:521–528.

    Article  CAS  Google Scholar 

  40. Thompson, H., and Ache, B.W., 1980, Threshold determination for olfactory receptors of the spiny lobster, Mar. Behav. Physiol., 7:249–260.

    Article  Google Scholar 

  41. Trapido-Rosenthal, H.G., Gleeson, R.A., Carr, W.E.S., Lambert, S.M., and Milstead, M.L., 1986, Purinergic and taurinergic chemoreception in the spiny lobster: Physiology and biochemistry, Soc. Neurosci. Abst., 12:1353.

    Google Scholar 

  42. Trapido-Rosenthal, H.G., Gleeson, R.A., Carr, W.E.S., Lambert, S.M., and Milstead, M.L., in press, The biochemistry of the olfactory purinergic system, in: Proceedings of the Ninth International Symposium on Olfaction and Taste, The New York Academy of Sciences, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gleeson, R.A., Trapido-Rosenthal, H.G., Carr, W.E.S. (1987). A Taurine Receptor Model: Taurine-Sensitive Olfactory Cells in the Lobster. In: Huxtable, R.J., Franconi, F., Giotti, A. (eds) The Biology of Taurine. Advances in Experimental Medicine and Biology, vol 217. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0405-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0405-8_27

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0407-2

  • Online ISBN: 978-1-4899-0405-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics