Skip to main content

Abstract

One of the most feared hazards in any system is that of unwanted combustion. The possibility of fire and explosion is a legitimate cause for concern and for additional attention to system safety. Although carbon monoxide, as well as oxygen and condensed air (see Chapter 9), can present a combustion hazard, here we will be concerned with liquid hydrogen and, to a lesser extent, with liquefied natural gas (LNG).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hord, J. (1976). Is Hydrogen Safe?, National Bureau of Standards Technical Note 690, Institute of Basic Standards, National Bureau of Standards, Boulder, Colorado.

    Google Scholar 

  2. National Fire Protection Association (1962). National Electric Code, Article 501—Class I Locations, National Fire Protection Association, Quincy, Massachusetts.

    Google Scholar 

  3. Cassutt, L., Biron, D., and Vonnegut, B. (1962). Electrostatic hazards associated with the transfer and storage of liquid hydrogen, in Advances in Cryogenic Engineering (K. D. Timmerhaus, ed.), Vol. 7, pp. 327–335, Plenum Press, New York.

    Google Scholar 

  4. Arthur D. Little, Inc. (1961). Final Report, Electrostatic Hazards Associated with the Transfer and Storage of Liquid Hydrogen, Contract AF 18(600)-1687, Arthur D. Little, Inc., Cambridge, Massachusetts.

    Google Scholar 

  5. Willis, W. L. (1966). Electrical conductivity of some cryogenic fluids, Cryogenics 6 (October), 279.

    Article  CAS  Google Scholar 

  6. Willis, W. L. personal communication.

    Google Scholar 

  7. Chelton, D. B. (1964). Safety in the use of liquid hydrogen, Chapter 10 in Technology and Uses of Liquid Hydrogen (R. B. Scott, W. H. Denton, and C. M. Nicholls, eds.), Chap. 10, Pergamon Press, Oxford.

    Google Scholar 

  8. Edeskuty, F. J. (1979). Safety, in Hydrogen: Its Technology and Implications (K. E. Cox and K. D. Williamson, Jr., eds.), Vol. IV, Chap. 5, CRC Press, Boca Raton, Florida.

    Google Scholar 

  9. Straitz, J. F. III (1987). Flare technology safety, Chem. Eng. Prog. 83(2), 53–62.

    CAS  Google Scholar 

  10. Zabetakis, M. G. (1967). Safety with Cryogenic Fluids, Plenum Press, New York.

    Google Scholar 

  11. Witcofski, R. D., and Chirivella, J. E. (1984). Experimental and analytical analysis of the mechanisms governing the dispersion of flammable clouds formed by liquid hydrogen spills, in Proceedings of the World Hydrogen Energy Conference IV (T. N. Veziroglu, W. D. Van Vorst, and J. H. Kelley, eds.), Pergamon Press, Elmsford, New York.

    Google Scholar 

  12. Stewart, W. F., Dewart, J. M., and Edeskuty, F. J. (1990). Safe venting of hydrogen, in Hydrogen Energy Progress VIII (T. N. Veziroglu, ed.), Pergamon Press, New York.

    Google Scholar 

  13. Custer, R. L. P., and Bright, R. G. (1974). Fire Detection: State-Of-The-Art, NASA Lewis Research Center Report NASA CR-134642, Cleveland, Ohio.

    Google Scholar 

  14. Bowen, T. L. (1975). Investigation of Hazards Associated with Using Hydrogen as a Military Fuel, Naval Ship Research and Development Center Report 4541, Bethesda, Maryland.

    Google Scholar 

  15. Ordin, P. M. (1974). Review of hydrogen accidents and incidents in NASA operations, in Proceedings of the Ninth Intersociety Energy Conversion Engineering Conference, pp. 442-453, American Society of Mechanical Engineers, San Francisco, California.

    Google Scholar 

  16. Hardee, H. C, and Lee, D. O. (1977/78). A simple conduction model for skin burns resulting from chemical fireballs, Fire Res. 1, 199.

    Google Scholar 

  17. Weintraub, A. A. (1965). Control of Liquid Hydrogen Hazards at Experimental Facilities, Health and Safety Laboratory Report HASL-160, U.S. Atomic Energy Commission, New York.

    Google Scholar 

  18. Reider, R., Otway, H., and Knight, H. T. (1965). An unconfined, large-volume hydrogen/air explosion, Pyrodynamics 2, 249–261.

    Google Scholar 

  19. Brewer, G. D. (1991). Hydrogen Aircraft Technology, CRC Press, Boca Raton, Florida.

    Google Scholar 

  20. National Fire Protection Association (1994). Liquefied Hydrogen Systems at Consumer Sites, National Fire Protection Association Report NFPA 50B, Quincy, Massachusetts.

    Google Scholar 

  21. Edeskuty, F. J., Reider, R., and Williamson, K. D., Jr. (1971). Safety, in Cryogenic Fundamentals, (G. G. Haseiden, ed.), Chap. 11, Academic Press, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Edeskuty, F.J., Stewart, W.F. (1996). Combustion Hazards. In: Safety in the Handling of Cryogenic Fluids. The International Cryogenics Monograph Series. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0307-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0307-5_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0309-9

  • Online ISBN: 978-1-4899-0307-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics