Skip to main content

Part of the book series: NATO ASI Series ((NSSB,volume 358))

  • 316 Accesses

Abstract

Fundamental problems are raised by the mechanical effects associated with radiation pressure fluctuations in vacuum. The instability of motions when radiation reaction is taken into account, and the existence of “runaway solutions” [1], can be avoided for mirrors by recalling that they are actually transparent to high frequencies of the field [2]. However, partially transmitting mirrors, and cavities, introduce scattering time delays which result in a temporary storage of part of the scattered vacuum fluctuations [3]. In particular, the energy related to Casimir forces [4] identifies with the energy of field fluctuations stored in the cavity [3]. This revives the questions of the contribution of vacuum fluctuations to inertia and gravitation [5], and of its consistency with the general principles of equivalence and of inertia of energy.

Unité propre du Centre National de la Recherche Scientifique, associée à l’Ecole Normale Supérieure et à l’Université de Paris Sud.

Unité de l’Ecole Normale Supérieure et de l’Université Pierre et Marie Curie, associée au Centre National de la Recherche Scientifique.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Rohrlich. Classical Charged Particles, Addison-Wesley, Reading (1965).

    MATH  Google Scholar 

  2. M.T. Jaekel and S. Reynaud, Phys. Lett. A 167:227 (1992).

    Google Scholar 

  3. M.T. Jaekel and S. Reynaud, J. Phys. I France 1:1395 (1991).

    Article  Google Scholar 

  4. H.B.G. Casimir, Proc. K. Ned. Akad. Wet. 51:793 (1948).

    MATH  Google Scholar 

  5. G. Plunien, B. Müller and W. Greiner, Phys. Rep. 134:87 (1986).

    Article  MathSciNet  Google Scholar 

  6. W. Nernst, Verh. Deutsch. Phys. Ges. 18:83 (1916).

    Google Scholar 

  7. C.P. Enz, in: Physical Reality and Mathematical Description, C.P. Enz and J. Mehra, eds., Reidel, Dordecht (1974).

    Google Scholar 

  8. P.S. Wesson, ApJ 378:466 (1991).

    Article  Google Scholar 

  9. N.D. Birell and P.C.W. Davies. Quantum Fields in Curved Space, University Press, Cambridge (1982).

    Book  Google Scholar 

  10. S.A. Fulling. Aspects of Quantum Field Theory in Curved Spacetime, University Press, Cambridge (1989).

    Book  Google Scholar 

  11. E.P. Wigner, Phys. Rev. 98:145 (1955).

    Article  MathSciNet  MATH  Google Scholar 

  12. E.L. Bolda, R.Y. Chiao, G.C. Garrison, Phys. Rev. A 48:3890 (1993).

    Google Scholar 

  13. M.T. Jaekel and S. Reynaud, J. Phys. I France 2:149 (1992).

    Article  Google Scholar 

  14. A. Einstein, Phys. Z. 18:121 (1917).

    Google Scholar 

  15. M.T. Jaekel and S. Reynaud, Quantum Opt. 4:39 (1992).

    Article  MathSciNet  Google Scholar 

  16. G.T. Moore, J. Math. Phys. 11:2679 (1970).

    Article  Google Scholar 

  17. R. Kubo, Rep. Prog. Phys. 29:255 (1966).

    Article  Google Scholar 

  18. L.D. Landau and E.M. Lifschitz. Cours de Physique Théorique, Physique Statistique, première partie, Mir, Moscou (1984).

    Google Scholar 

  19. M.T. Jaekel and S. Reynaud, J. Phys. I France 3:1093 (1993).

    Article  Google Scholar 

  20. A. Einstein. The Meaning of Relativity, University Press, Princeton (1946).

    Google Scholar 

  21. A.D. Sakharov, Doklady Akad. Nauk SSSR 177:70 (1967).

    Google Scholar 

  22. A.D. Sakharov, [Sov. Phys. Doklady 12:1040 (1968)].

    Google Scholar 

  23. A. Einstein, Jahrb. Radioakt. Elektron. 4:411 (1907).

    Google Scholar 

  24. A. Einstein, Jahrb. Radioakt. Elektron. 5:98 (1908).

    Google Scholar 

  25. [H.M. Schwartz, Am. J. Phys. 45:512, 811, 899 (1977)].

    Article  Google Scholar 

  26. M.T. Jaekel and S. Reynaud, Phys. Lett. A 180:9 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jaekel, MT., Reynaud, S. (1997). Quantum Fluctuations and Inertia. In: Dowling, J.P. (eds) Electron Theory and Quantum Electrodynamics. NATO ASI Series, vol 358. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0081-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0081-4_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0083-8

  • Online ISBN: 978-1-4899-0081-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics