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WHY DO LIQUIDS FREEZE? 

At fixed pressure, as the temperature is decreased all liquids freeze. [Liquid 

helium at pressures below about 25 atm appears to be the only exception!] Why do 

liquids abandoned their random, 'disordered' structure, and form periodic arrays? As 

surprising as it seems, at present there is no molecular level, first principles theory of 

freezing or melting, even for the simplest materials. The prediction of phase diagrams 

is an important first step in understanding t.he cryst.al/melt interface, crystallization 

near equilibrium, and nucleation. Recently a new approximate theory for the freezing 

of classical liquids, known as the density functional (DF) theory, has been developed.! 

The mathematical structure of the theory is simple enough that it provides an attractive 

starting point for theories of more complex, dynamical phenomena. 

Here we will discuss simple liquids, where by 'simple' we mean liquids such as 

pure methane, sodium or water. The crystallization of huge molecules, such as proteins, 

is an essential first step in the determination of structure from scattering experiments. 

Even for the simplest, classical liquids there is no universal (or universally accepted) 

theory of freezing, or indeed of first order phase transitions in general. Theories for 

the behavior of glass formers, such as many polymeric systems, are a separate issue 

not discussed here, but start from ideas developed for materials which crystallise. 

[Even glass formers have a lower free energy crystalline state, which may be kinetically 

inaccessible under many conditions.] 

The lack of theory might seem puzzling, since the thermodynamic conditions 
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for phase equilibrium stated by Gibbs are well known. At a given temperature T and 

pressure p, the laws of Thermodynamics prove that the phase wit.h the lowest free 

energy is the stable phase. For two coexisting phases. denoted here by the subscripts 

'S' for solid and' L' for liquid, the temperatures, pressures and chemical potentials fl.J 

of all components ']' must be equal: 

PL =Ps )J) _ 1I(j) 
,-L -,-s . (1 ) 

From a microscopic point of view, the prediction of freezing, and phase diagrams in 

general, is straightforward in principle. One should use the techniques of statistical 

mechanics to predict the thermodynamic properties of the material under study, and use 

equation (1) to determine the phase boundaries. In practice, the calculation of reliable 

values for the free energy has proven extremely difficult, and hence the phenomenon of 

freezing/melting has attracted the attention of many scientists and generated a huge 

literature. 

TRANSLATIONAL SYMMETRY BREAKING 

There are additional. much deeper questions concerning freezing. Why do 

materials adopt a specific symmetric crystal structure at all? This phenomenon is 

called 'spontaneous translational symmetry breaking' and occurs in many branches of 

science, including particle physics. The short answer is: we do not know. Even within 

classical mechanics, we have no theory which can analyse a given Hamiltonian and 

predict the symmetry of the crystal to which it will freeze. At present, the symmetry 

breaking has to be put into the theory 'by hand'. By this we mean that a particular 

symmetry is assumed and its free energy evaluated relative to other candidate crystal 

symmetries. 

Most substances contract when they freeze, but water and a few other materials 

(silicon, gallium arsenide, gallium and bismuth, to name a few) expand. The degree 

of expansion or contraction varies widely, even for simple materials at one atmosphere 

pressure. Liquid sodium metal contracts 3% when it freezes at 98°C, molten sodium 

chloride contracts 39% at 801°C, and gallium expands by 3% at 30°C! The fractional 

density change on freezing, denot.ed fI, may be calculat.ed from the liquid (number) 

density PL and the average cryst.al density {Js, using t.he definit.ion 

Ps - PL 
T}= 

PL 
(2) 

This 'non-universal' property of the freezing transition is displayed in Table 2 for a 

variety of materials. Prediction of this property constitutes a major challenge to any 

theory. 
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THE DENSITY WAVE PICTURE 

Both qualitative and quantitative predictions for freezing arise from a relatively 

new, approximate theory of freezing, known from its mathematical structure as 

the 'density functional' (DF) theory. Although it side-steps the most fundamental 

mathematical question of crystallization, namely the spontaneous symmetry breaking 

discussed above, the density functional theory is proving to be a useful, numerically 

simple tool for treating practical problems of phase coexistence. It has been used to 

construct approximate theories of the crystal/melt interface, nucleation, glasses, the 

stability of quasicrystals, the prediction of vacancy concentrations in the crystal at 

melting, and the freezing of quantum liquids, as well as the standard mathematical 

models of freezing such as hard spheres, the Lennard-Jones system and mixtures. There 

are a number of review articles which cover these developments. 2•3 ,1,4 

Here we focus on the qualitative ideas, which should turn out to be helpful in 

other areas. At fixed pressure, the determination of the freezing points amounts to 

finding the temperature of at which the free energy of the random liquid exactly equals 

the free energy of the spatially ordered crystal. The density wave point of view, which 

originates with Ramakrishnan, views the crystal as a liquid permeated with standing 

waves in the density, These waves measure the displacement of the particles from 

their perfect lattice sites, and have wavelengths corresponding to all possible reciprocal 

lattice vectors (RLV's) in the crystal. The amplitudes of the waves are related to the 

(wavevector dependent) Debye- Waller factor in the equilibrium crystal. The freezing 

temperature is that unique temperature at which the free energy penalty for creating 

such an infinite network of density waves is exactly zero. 

MATHEMATICAL THEORY 

The complete mathematical theory has been reviewed in detail very recently. 1 

Here we focus on the concepts. The central mathematical quantity in the DF freezing 

theory is the equilibrium average, single particle density p( r). In the isotropic liquid 

phase this quantity is simply a constant, PL, the number density of the material. In the 

solid phase the density is spatially varyillg, with a symmetry determined by the crystal 

type and a period det.ermined by t.he average (over a unit cell) crystal density PS. It is 

convenient to write the crystal dellsity as a Fourier sum 

p( r) = P L [1 + 1) + ~ Iln exp( ikn . r)] , (3) 

where 1) is the fractional density change on freezing defined above, {kn } is the set of 

reciprocal lattice vectors which defines the lattice, and Iln are order parameters which 

measure the degree of periodic order of wave vector k" in the crystal. 

The go~l of the freezing theory is simply to predict. the temperature dependence 

of these order parameters. At high teIllperat.ure all will be zero. At the freezing 
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point they will assume some non-zero, finite value, which will gradually increase as 

the temperature is lowered further, until absolute zero temperature is reached, or a 

second (crystal-crystal) phase transition intervenes. In some more recent work the 

crystal density is expanded as a sum of Gaussians centered at each lattice site; this 

additional approximation simply imposes a relation which fixes all the order parameters 

J.ln given just one of them, say J.ll. Such an approximation is often useful and accurate 

for close-packed crystals. 

The free energy F of the liquid or crystal, along with the other thermodynamic 

quantities, can be expressed as a functional F[p(r)] of the density p(r). This is the 

origin of both the name 'density functional theory', and the power of the technique. 

Since we are seeking the temperature at which phases coexist at the same pressure and 

chemical potential, it is convenient to express the theory in terms of the grand potential 

difference between the liquid and crystal, !::"po., where ;3-1 = kT. The exact expression 

for this difference, which will vanish exactly at the freezing point, is given, for example, 

in a paper by Laird, McCoy and Haymet,5 equation (4.13). Simplifying that equation 

we obtain the form, 

!::,.j3o. 1"" 2 ----v = cofJ + ,/2 ~ CnJ.l n + higher order terms, 
PL n 

(4) 

where the sum is over all RLV's of the crystal {k,,}. The first. term is the change in 

grand potential due to the overall contraction (or expansion) of the liquid on freezing. 

The sum is nothing but the free energy of setting up standing waves of wavelength {kn }. 

The theory is completed by specifying the coefficients Co and Cn. To first order 

in thermodynamic perturbation theory, these coefficients are related to the structure 

factor of the equilibrium liquid, a quantity which is accessible via X-ray or neutron 

elastic scattering. Specifically, Cn = c( kn ) = 1 - 1/ S( kn ). These coefficients Cn 

of course depend on the temperature and pressure of the liquid. In the years since 

the original calculat.ions. a host. of other mf't.hods have been devised for relating the 

coefficients Cn to known properties, but in each case knowledge of the equilibrium liquid 

is required. Since we focus only on qualitative concepts here, we will not review the 

strengths and weaknesses of each method. 

The freezing point is then located by lowering the temperature of the liquid. 

At a certain unique temperature, the terms in equation (4) will exactly balance each 

other, and the grand potential difference between liquid and crystal will be zero. That 

is, the temperatures, pressures and chemical potentials of the liquid aIld crystal will be 

exactly equal. Although it may not be obvious from the above discussion, this process 

is simply the Maxwell construction in the grand ensemble. 

Note that some density waves lower the free energy of the crystal relative to the 

liquid, and other raise it (depending on the sign of Cn for the wave vector kn of the 

density wave). But the crystal cannot just select a subset of density waves: it has to 

take them all. The crystal symmetry dictates that if the crystal has one density wave, 
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it has all the overtones. sums and differences: that is. all the symmetry related density 

waves consistent with the specified symmetry. Hence t.he process of crystallization is 

seen to be an incredibly delicate balance of three contribut.ions. (i) t.he overall expansion 

or contraction of the crystal (which may raise or lower the free energy, depending on 

the crystal), (ii) those standing waves in the singlet density which increase the free 

energy, and (iii) those standing waves which lower the free energy. Only when all three 

contributions cancel does the free energy of the periodic crystal exactly equal the free 

energy of the liquid. Perhaps this density wave point of view can be transferred to 

other, even more complex problems. 

SUMMARY 

The radical feature of the DF theory is that the free energy is assumed to be 

an analytic functional of the singlet density. For a second order transition, such as the 

gas-liquid critical point, this would be a poor approximation (and lead, among other 

things, to incorrect 'classical' critical exponents). However, for certain first order phase 

transitions, the empirical evidence is that the truncation of this expansion at first order 

is useful. The mathematical approximations mean that. the density functional theory is 

far from a rigorous solution to the freezing problem. :"ievertheless, by building upon the 

advances in liquid theory, and using the structure of the liquid as a starting point for 

perturbation theory, the density functional theory does constitute a complete theory 

of freezing. It starts from the laws of statistical mechanics and a knowledge of the 

forces between the molecules, and by making a series of well defined (and relatively 

well t.ested) approximations. the theory predicts the phase diagram. 
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