Skip to main content

Electrofusion

Principles and Applications

  • Chapter
Cell Fusion

Abstract

Electric field-induced cell fusion (electrofusion) is emerging as a promising new tool in cell biology and somatic cell genetics. Compared with other cell-fusion techniques, electrofusion is rapid, simple, and highly efficient. What makes electrofusion truly unique, however, is its unusual physical basis. As a consequence, electrofusion creates some novel experimental opportunities. Although electrofusion has been the subject of several recent reviews (Pohl et al., 1984; Zimmermann et al., 1984a, b), these reviews have focused on the results of just a few laboratories; a wider review of the field may, therefore, be beneficial. This chapter has two components: (1) a discussion of the underlying physical principles of electrical fusion to elucidate the inherent strengths and limitations of the technique, and (2) a broad-based, critical account of progress in applying electrofusion to cell biology and somatic cell genetics. Wherever possible we have stressed the need for quantitative as opposed to qualitative observations and have tried to indicate important areas requiring further research. Our goal is to provide both a theoretical and a practical basis from which workers interested in pursuing this technique, or those with a general interest in cell and membrane fusion, can compare electrofusion with other fusion methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abidor, I. G., Arakelyan, V. G., Chernomordik, L. V., Chizmadzhev, Yu. A., Pastushenko, V. F., and Tarasevich, M. R., 1979, Electric breakdown of bilayer lipid membranes, Bioelectrochem. Bioenerg. 6:37–52.

    Article  CAS  Google Scholar 

  • Adams, R. J., 1982, Organelle movement in axons depends on ATP, Nature (Lond.) 297:327–329.

    Article  CAS  Google Scholar 

  • Asano, A., and Asano, K., 1982, Mechanism of HVJ-induced cell fusion, in: Structure, Dynamics, and Biogenesis of Biomembranes (R. Sato and S. Ohinishi, eds.), pp. 57–77, Japan Scientific Societies Press, Tokyo, and Plenum Press, New York.

    Chapter  Google Scholar 

  • Baker, P. F., and Knight, D. E., 1978, Calcium dependent exocytosis in bovine adrenal medullary cells with leaky plasma membranes, Nature (Lond.) 276:620–622.

    Article  CAS  Google Scholar 

  • Bates, G. W., 1985, Electrical fusion for the optimal formation of protoplast heterokaryons in Nicotiana, Planta 165:217–224.

    Article  Google Scholar 

  • Bates, G. W., and Hasenkampf, C. A., 1985, Culture of plant somatic hybrids following electrical fusion, Theor. Appl. Genet. 70:227–233.

    Article  Google Scholar 

  • Bates, G. W., Gaynor, J. J., and Shekhawat, N. S., 1983, The fusion of plant protoplasts by electric fields, Plant Physiol. 72:1110–1113.

    Article  PubMed  CAS  Google Scholar 

  • Benz, R., and Zimmermann, U., 1981, High electric field effects on the cell membranes of Halicystis parvula. A charge pulse study., Planta 152:314–318.

    Article  Google Scholar 

  • Benz, R., Beckers, F., and Zimmermann, U., 1979, Reversible electrical breakdown of lipid bilayer membranes: A charge-pulse relaxation study, J. Membrane Biol. 48:181–204.

    Article  CAS  Google Scholar 

  • Berg, H., 1982, Biological implications of electric field effects. Part V. Fusion of blastomeres and blastocysts of mouse embryos, Bioelectrochem. Bioenerg. 9:223–228.

    Article  Google Scholar 

  • Berg, H., Augsten, K., Bauer, E., Forster, W., Jacob, H. E., Muhlig, P., and Weber, H., 1984, Possibilities of cell fusion and transformation by electrostimulation, Bioelectrochem. Bioenerget. 12:119–133.

    Article  CAS  Google Scholar 

  • Bischoff, R., Eisert, R. M., Schedel, I., Vienken, J., and Zimmermann, U., 1982, Human hy-bridoma cells produced by electro-fusion, FEBS Lett. 147:64–68.

    Article  PubMed  CAS  Google Scholar 

  • Blangero, C., and Teissie, J., 1983, Homokaryon production by electro fusion: A convenient way to produce a large number of viable mammalian fused cells, Biochem. Biophys. Res. Commun. 114:663–669.

    Article  Google Scholar 

  • Blangero, C., and Teissie, J., 1985, Ionic modulation of electrically induced fusion of mammalian cells, J. Membrane Biol. 86:247–253.

    Article  CAS  Google Scholar 

  • Büschl, R., Ringsdorf, H., and Zimmermann, U., 1982, Electric field-induced fusion of large liposomes from natural and polymerizable lipids, FEBS Lett. 150:38–42.

    Article  Google Scholar 

  • Chandler, D. E., Heuser, J. E., 1980, Arrest of membrane fusion events in mast cells by quickfreezing, J. Cell Biol 86:666–674.

    Article  PubMed  CAS  Google Scholar 

  • Chapel, M., Teissie, J., and Alibert, G., 1984, Electrofusion of spermine-treated plant protoplasts, FEBS Lett. 173:331–336.

    Article  CAS  Google Scholar 

  • Cole, K. S., 1968, Membranes, Ions and Impulses. A Chapter of Classical Biophysics, University of California Press, Berkeley.

    Google Scholar 

  • Coster, H. G. L., and Zimmermann, U., 1975, Dielectric breakdown in the membranes of Valonia utricularis, Biochim. Biophys. Acta 382:410–418.

    Article  PubMed  CAS  Google Scholar 

  • Crowley, J. M., 1973, Electrical breakdown of bimolecular lipid membranes as an electromechanical instability, Biophys. J. 13:711–724.

    Article  PubMed  CAS  Google Scholar 

  • de Kruijff, B., Cullis, P. R., Verkleij, A. J., Hope, M. J., van Echteld, C. J. A., and Taraschi, T. F., 1985, Lipid polymorphism and membrane function, in: The Enzymes of Biological Membranes, Vol. 1: Membrane Structure and Dynamics (A. N. Martonosi, ed.), pp. 131–204, Plenum Press, New York.

    Chapter  Google Scholar 

  • Dimitrov, D. S., and Jain, R. K., 1984, Membrane stability, Biochim. Biophys. Acta 779:437–468.

    Article  PubMed  CAS  Google Scholar 

  • Finaz, C., Lefevre, A., and Teissie, J., 1984, A new, highly efficient technique for generating somatic cell hybrids, Exp. Cell Res. 150:477–482.

    Article  PubMed  CAS  Google Scholar 

  • Gauger, B., and Bentrup, F. W., 1979, A study of dielectric membrane breakdown in the Fucus egg, J. Membrane Biol. 48:249–264.

    Article  CAS  Google Scholar 

  • Gingell, D., and Ginsberg, L., 1978, Problems in the physical interpretation of membrane interaction and fusion, in: Membrane Fusion (G. Poste and G. L. Nicolson, eds.), pp. 792–833, North-Holland, Amsterdam.

    Google Scholar 

  • Gleba, Y. Y, and Sytnik, K M., 1984, Protoplast Fusion. Genetic Engineering in Higher Plants, in: Monographs on Theoretical and Applied Genetics, Vol. 8 (R. Frankel, ed.), Springer-Verlag, Berlin.

    Google Scholar 

  • Halfmann, H. J., Rocken, W., Emeis, C. C., and Zimmermann, U., 1982, Transfer of mitochondrial function into a cytoplasmic respiratory-deficient mutant of Saccharomyces yeast by electro-fusion, Curr. Genet. 6:25–28.

    Article  Google Scholar 

  • Halfmann, H. J., Emeis, C. C., and Zimmermann, U., 1983, Electro-fusion of haploid Saccharomyces yeast cells of identical mating type, Arch. Microbiol. 134:1–4.

    Article  Google Scholar 

  • Hui, S. W., Isac, T., Boni, L. T., and Sen, A., 1985, Action of polyethylene glycol on the fusion of human erythrocyte membranes, J. Membrane Biol. 84:137–146.

    Article  CAS  Google Scholar 

  • Jacob, H. E., Siegemund, F., and Bauer, E., 1984, Fusion von pflanzlichen Protoplasten durch elektrischen Feldimpuls nach Dielectrophorese, Biol. Zentralbl. 103:77–82.

    Google Scholar 

  • Kao, K. N., 1981, Plant protoplast fusion and somatic hybrids, in: Plant Tissue Culture (H. Han, ed.), pp. 331–339, The Pitman International Series in Applied Biology, Proceedings of Beijing Symposium, London.

    Google Scholar 

  • Kao, K. N., and Michayluk, M. R., 1974, A method for high frequency of intergeneric fusion of plant protoplasts, Planta 115:355–367.

    Article  CAS  Google Scholar 

  • Karsten, U., Papsdorf, G., Roloff, G., Stolley, P., Abel, H., Walther, I., and Weiss, H., 1985, Monoclonal anti-cytokeratin antibody from a hybridoma clone generated by electrofusion, Eur. J. Cancer Clin. Oncol. 21:733–740.

    Article  PubMed  CAS  Google Scholar 

  • Kartha, K. K., Gamborg, O. L., Constabel, F., and Kao, K. N., 1974, Fusion of rapeseed and soybean protoplasts and subsequent division of heterokaryocytes, Can. J. Bot. 52:2435–2436.

    Article  Google Scholar 

  • Kinosita, K., and Tsong, T.Y., 1977a Hemolysis of human erythrocytes by a transient electric field, Proc. Natl. Acad. Sci. U.S.A. 74:1923–1927.

    Article  PubMed  CAS  Google Scholar 

  • Kinosita, K., and Tsong, T.Y., 1977b, Formation and resealing of pores of controlled sizes in human erythrocyte membrane, Nature (Lond.) 268:438–441.

    Article  Google Scholar 

  • Kinosita, K., and Tsong, T. Y, 1979, Voltage-induced conductance in human erythrocyte membranes, Biochim. Biophys. Acta 554:479–497.

    Article  PubMed  CAS  Google Scholar 

  • Kohn, H., Schieder, R., and Schieder, O., 1985, Somatic hybrids in tobacco mediated by electrofusion, Plant Sci. 38:121–128.

    Article  Google Scholar 

  • Koop, H. U., Dirk, J., Wolff, D., and Scheiger, H. G., 1983, Somatic hybridization of two selected single cells, Cell Biol. Int. Rep. 7:1123–1128.

    Article  PubMed  CAS  Google Scholar 

  • Lo, M. M. S., Tsong, T. Y, Conrad, M. D., Strittmatter, S. M., Hester, L. D., and Snyder, S. H., 1984, Monoclonal antibody production by receptor-mediated electrically induced cell fusion, Nature (Lond.) 310:792–794.

    Article  CAS  Google Scholar 

  • Lucy, J. A., 1984, Fusogenic mechanisms, in: Cell Fusion, Ciba Foundation Symposium 103 (J. Evered and J. Whelan, eds.), pp. 28–39, Pitman, London.

    Google Scholar 

  • McCloskey, M. A., Liu, Z. y, and Poo, M. M., 1984, Lateral electromigration and diffusion of Fce receptors on rat basophilic leukemia cells: Effects of IgE binding, J. Cell Biol. 99:778–787.

    Article  PubMed  CAS  Google Scholar 

  • Mehrle, W., Zimmermann, U., and Hampp, R., 1985, Evidence for asymmetrical uptake of fluorescent dyes through electro-permeabilized membranes of Avena mesophyll protoplasts, FEBS Lett. 185:89–94.

    Article  CAS  Google Scholar 

  • Melikyan, G. B., Abidor, I. G., Chernomordik, L. V., and Chailakhyan, L. M., 1983, Electro-stimulated fusion and fission of bilayer lipid membranes, Biochim. Biophys. Acta 730:395.

    Article  CAS  Google Scholar 

  • Mishra, K. P., Binh, L. D., and Singh, B. B., 1981, Effect of dielectric discharge on drug treated mammalian cells, Ind. J. Exp. Biol 19:520–523.

    CAS  Google Scholar 

  • Neumann, E., and Katchalsky, A., 1972, Long-lived conformation changes induced by electric impulses in biopolymers, Proc. Natl. Sci. U.S.A. 69:993–997.

    Article  CAS  Google Scholar 

  • Neumann, E., Gerisch, G., and Opatz, K., 1980, Cell fusion induced by high electric impulses applied to Dictyostelium, Naturwissenschaften 67:414–415.

    Article  Google Scholar 

  • Neumann, E., Schaefer-Ridder, M., Wang, Y, and Hofschneider, P. H., 1982, Gene transfer into mouse lymphoma cells by electroporation in high electric fields, EMBO J. 1:841–845.

    PubMed  CAS  Google Scholar 

  • Ohno-Shosaku, T., and Okada, Y, 1984, Facilitation of electrofusion of mouse lymphoma cells by the proteolytic action of proteases, Biochem. Biophys. Res. Commun. 120:138–143.

    Article  PubMed  CAS  Google Scholar 

  • Pethig, R., 1979, Dielectric and Electronic Properties of Biological Materials, Wiley, New York.

    Google Scholar 

  • Pilwat, G., Zimmermann, U., and Riemann, F., 1975, Dielectric breakdown measurements of human and bovine erythrocyte membranes using benzyl alcohol as a probe molecule, Biochim. Biophys. Acta 406:424–432.

    Article  PubMed  CAS  Google Scholar 

  • Pliquett, F., and Wunderlich, S., 1980, Relationship between cell parameters and pulse deformation due to these cells as well as its change after electrically induced membrane breakdown, Bioelectrochem. Bioenerg. 10:467–475.

    Article  Google Scholar 

  • Podesta, E. J., Solano, A. R., Molina, Y, Vedia, L., Paladini, A., Sanchez, M. L., and Torres, H. N., 1984, Production of steroid hormone and cyclic AMP in hybrids of adrenal and Leydig cells generated by electrofusion, Eur. J. Biochem. 145:329–332.

    Article  PubMed  CAS  Google Scholar 

  • Pohl, H. A., 1978, Dielectrophoresis, Cambridge University Press, London.

    Google Scholar 

  • Pohl, H. A., and Crane, J. S., 1971, Dielectrophoresis of cells, Biophys. J. 11:711–728.

    Article  PubMed  CAS  Google Scholar 

  • Pohl, H. A., Pollock, K., and Rivera, H., 1984, The electrofusion of cells, Int. J. Quant. Chem. Quant. Biol. Symp. 11:327–345.

    Article  CAS  Google Scholar 

  • Poo, M., 1981, Insitu electrophoresis of membrane components, Annu. Rev. Biophys. Bioeng. 10:245–276.

    Article  PubMed  CAS  Google Scholar 

  • Poste, G., and Pasternak, C. A., 1978, Virus-induced cell fusion, in: Membrane Fusion (G. Poste and G. L. Nicolson, eds.), pp. 306–367, North-Holland, Amsterdam.

    Google Scholar 

  • Potter, H., Weir, L., and Leder, P., 1984, Enhancer-dependent expression of human k immunoglobulin genes introduced into mouse pre-B lymphocytes by electroporation, Proc. Natl Acad. Sci. U.S.A.81:7161–7165.

    Article  PubMed  CAS  Google Scholar 

  • Richter, H. P., Scheurich, P., and Zimmermann, U., 1981, Electric field-induced fusion of sea urchin eggs, Dev. Growth Diff.23:479–486.

    Article  Google Scholar 

  • Riemann, F., Zimmermann, U., and Pilwat, G., 1975, Release and uptake of haemoglobin and ions in red blood cells induced by dielectric breakdown, Biochim. Biophys. Acta 394:449–462.

    Article  PubMed  CAS  Google Scholar 

  • Ruthe, H. J., and Adler, J., 1985, Fusion of bacterial spheroplasts by electric fields, Biochim. Biophys. Acta 819:105–113.

    Article  PubMed  CAS  Google Scholar 

  • Sale, A. J. H., and Hamilton, W. A., 1968, Effects of high electric fields on micro-organisms. III. Lysis of erythrocytes and protoplasts, Biochim. Biophys. Acta 163:37–43.

    Article  PubMed  CAS  Google Scholar 

  • Salhani, N., Vienken, J., Zimmermann, U., Ward, M., Davey, M. R., Clothier, R. H., Balls, M., Cocking, E. C., and Lucy, J. A., 1985, Haemoglobin synthesis and cell wall regeneration by electric field-induced interkingdom heterokaryons, Protoplasma 126:30–35.

    Article  CAS  Google Scholar 

  • Sauer, F. A., 1983, Forces on suspended particles in the electromagnetic field, in: Coherent Excitations in Biological Systems (H. Fröhlich and F. Kremer, eds.), pp. 134–144, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Saunders, J. A., Roskos, L. A., Mischke, S., Aly, M., and Owens, L. D., 1986, Behavior and viability of tobacco protoplasts in response to electrofusion parameters, Plant Physiol.80:117–121.

    Article  PubMed  CAS  Google Scholar 

  • Scheurich, P., and Zimmermann, U., 1980, Membrane fusion and deformation of red blood cells by electric fields, Z. Naturforsch.35c:1081–1085.

    CAS  Google Scholar 

  • Scheurich, P., and Zimmermann, U., 1981a, Electrically stimulated fusion of different plant cell protoplasts, Plant Physiol. 67:849–853.

    Article  PubMed  CAS  Google Scholar 

  • Scheurich, P., and Zimmermann, U., 1981b, Giant human erythrocytes by electric-field-induced cell-to-cell fusion, Naturwissenschaften 68:45–47.

    Article  PubMed  CAS  Google Scholar 

  • Schwister, K., and Deuticke, B., 1985, Formation and properties of aqueous leaks induced in human erythrocytes by electrical breakdown, Biochim. Biophys. Acta 816:332–348.

    Article  PubMed  CAS  Google Scholar 

  • Senda, M., Takeda, J., Abe, S., and Nakamura, T., 1979, Induction of cell fusion of plant protoplasts by electrical stimulation, Plant Cell Physiol.20:1441–1443.

    CAS  Google Scholar 

  • Serpersu, E. H., Kinosita, K., and Tsong, T. y, 1985, Reversible and irreversible modification of erythrocyte membrane permeability by electric field, Biochim. Biophys. Acta 812:779–785.

    Article  PubMed  CAS  Google Scholar 

  • Shimmen, T., and Tazawa, M., 1983, Permeabilization of Nitella internodal cell with electrical pulses, Protoplasma 117:93–96.

    Article  CAS  Google Scholar 

  • Shivarova, N., and Grigorova, R., 1983, Microbiological implications of electric field effects. Part VIII. Fusion of Bacillus thuringiensis protoplasts by high electric field phase, Bioelectrochem. Bioenerget. 11:181–185.

    Article  CAS  Google Scholar 

  • Shivarova, N., Forster, W., Jacob, H. E., and Grigorova, R., 1983, Microbiological implications of electric field effects. VII. Stimulation of plasmid transformation of Bacillus cereus protoplasts by electric field pulses, Allg. Mikrobiol.23:595–599.

    Article  Google Scholar 

  • Sowers, A. E., 1983, Fusion of mitochondrial inner membranes by electric fields produces inside-out vesicles. Visualization by freeze-fracture electron microscopy, Biochem. Biophys. Acta 735:426–428.

    Article  PubMed  CAS  Google Scholar 

  • Sowers, A. E., 1984, Characterization of electric field-induced fusion in erythrocyte ghost membranes, J. Cell Biol.99:1989–1996.

    Article  PubMed  CAS  Google Scholar 

  • Sowers, A. E., 1985, Movement of a fluorescent lipid label from a labeled erythrocyte membrane to an unlabeled erythrocyte membrane following electric-field-induced fusion, Biophys. J. 47:519–525.

    Article  PubMed  CAS  Google Scholar 

  • Sowers, A E., 1986, A long-lived fusogenic state is induced in erythrocyte ghosts by electric pulses, J. Cell Biol. 102:1358–1362.

    Article  PubMed  CAS  Google Scholar 

  • Steinbiss, H. H., 1978, Dielektrischer Durchbruch des Plasmalemmas von Valerianella locusta-Protoplasten, Z. Pflanzenphysiol. 88:95–102.

    CAS  Google Scholar 

  • Takashima, S., and Schwan, H. P., 1985, Alignment of microscopic particles in electric fields and its biological implications, Biophys. J. 47:513–518.

    Article  PubMed  CAS  Google Scholar 

  • Teissie, J., and Blangero, C., 1984, Direct experimental evidence of the vectorial character of the interaction between electric pulses and cells in cell electrofusion, Biochim. Biophys. Acta 775:446–448.

    Article  PubMed  CAS  Google Scholar 

  • Teissie, J., and Tsong, T. y, 1981, Electric field induced transient pores in phospholipid bilayer vesicles, Biochemistry 20:1548–1554.

    Article  PubMed  CAS  Google Scholar 

  • Teissie, J., Knutson, V. P., Tsong, T. y, and Lane, M. D., 1982, Electric pulse-induced fusion of 3T3 cells in monolayer culture, Science 216:537–538.

    Article  PubMed  CAS  Google Scholar 

  • Teixeira-Pinto, A. A., Nejelski, L. L., Jr., Cutler, J. L., and Heller, J. H., 1960, The behavior of unicellular organisms in an electromagnetic field, Exp. Cell Res. 20:548–564.

    Article  Google Scholar 

  • Tempelaar, M. J., and Jones, M. G. K., 1985a, Directed electrofusion between protoplasts with different responses in a mass fusion system, Plant Cell Rep. 4:92–95.

    Article  Google Scholar 

  • Tempelaar, M. J., and Jones, M. G. K., 1985b, Fusion characteristics of plant protoplasts in electric fields, Planta 165:205–216.

    Article  Google Scholar 

  • Tsong, T. Y, 1983, Voltage modulation of membrane permeability and energy utilization in cells, Biosci. Rep.3:487–505.

    Article  PubMed  CAS  Google Scholar 

  • Verhoek-Köhler, B., Hampp, R., Ziegler, H., and Zimmermann, U., 1983, Electro-fusion of mesophyll protoplasts of Avena sativa, Planta 158:199–204.

    Article  Google Scholar 

  • Vienken, J., and Zimmermann, U., 1982, Electric field-induced fusion: electro-hydraulic procedure for production of heterokaryon cells in high yield, FEBS Lett. 137:11–13.

    Article  PubMed  CAS  Google Scholar 

  • Vienken, J., Ganser, R., Hampp, R., and Zimmermann, U., 1981, Electric field-induced fusion of isolated vacuoles and protoplasts of different developmental and metabolic provenience, Physiol. Plant 53:64–70.

    Article  Google Scholar 

  • Vienken, J., Zimmermann, U., Fouchard, M., and Zagury, D., 1983a, Electrofusion of myeloma cells on the single cell level; fusion under sterile conditions without proteolytic enzyme treatment, FEBS Lett. 163:54–56.

    Article  PubMed  CAS  Google Scholar 

  • Vienken, J., Zimmermann, U., Ganser, R., and Hampp, R., 1983b, Vesicle formation during electro-fusion of mesophyll protoplasts of Kalanchoe diagremontiana, Planta 157:331–335.

    Article  Google Scholar 

  • Watts, J. W., and King, J. M., 1984, A simple method for large-scale electrofusion and culture of plant protoplasts, Biosci. Rep.4:335–342.

    Article  PubMed  CAS  Google Scholar 

  • Weber, H., Forster, W., Berg, H., and Jacob, H. E., 1981a, Parasexual hybridization of yeasts by electric field stimulated fusion of protoplasts, Curr. Genet. 4:165–166.

    Article  Google Scholar 

  • Weber, H., Forster, W., Jacob, H. E., and Berg, H., 1981b, Microbiological implications of electric field effects. III. Stimulation of yeast protoplast fusion by electric field pulses, Allg. Mikrobiol. 21:555–562.

    Article  CAS  Google Scholar 

  • White, S. H., 1980, How electric fields modify alkane solubility in lipid bilayers, Science 207:1075–1077.

    Article  PubMed  CAS  Google Scholar 

  • White, S. H., and Chang, W., 1981, Voltage dependence of the capacitance and area of black lipid membranes, Biophys. J. 36:449–453.

    Article  PubMed  CAS  Google Scholar 

  • Wong, T. K., and Neumann, E., 1982, Electric field mediated gene transfer, Biochem. Biophys. Res. Commun.107:584–587.

    Article  PubMed  CAS  Google Scholar 

  • Zachrisson, A., and Bornman, C. H., 1984, Application of electric field fusion in plant tissue culture, Physiol. Plant 61:314–320.

    Article  Google Scholar 

  • Zimmermann, U., 1982, Electric field-mediated fusion and related electrical phenomena, Biochem. Biophys. Acta 694:227–277.

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann, U., and Benz, R., 1980, Dependence of electrical breakdown voltage on the charging time in Valonia utricularis, J. Membrane Biol.53:33–43.

    Article  Google Scholar 

  • Zimmermann, U., and Scheurich, P., 1981, High frequency fusion of plant protoplasts by electric fields, Planta 151:26–32.

    Article  Google Scholar 

  • Zimmermann, U., and Vienken, J., 1982, Electric field-induced cell-to-cell fusion, J. Membrane Biol.67:165–182.

    Article  CAS  Google Scholar 

  • Zimmermann, U., Pilwat, G., Beckers, F., and Riemann, F., 1976, Effects of external electrical fields on cell membranes, Bioelectrochem. Bioenerget.3:58–83.

    Article  CAS  Google Scholar 

  • Zimmermann, U., Beckers, F., and Coster, H. G. L., 1977, The effect of pressure on the electrical breakdown in the membranes of Valonia utricularis, Biochim. Biophys. Acta 464:399–416.

    Article  CAS  Google Scholar 

  • Zimmermann, U., Vienken, J., and Pilwat, G., 1980, Development of drug carrier systems: Electrical field induced effects in cell membranes, Bioelectrochem. Bioenerget 7:553–574.

    Article  CAS  Google Scholar 

  • Zimmermann, U., Pilwat, G., and Richter, H. P., 1981a, Electric-field-stimulated fusion: Increased field stability of cells induced by pronase, Naturwissenschaften 68:577–579.

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann, U., Vienken, J., and Pilwat, G., 1981b, Rotation of cells in an alternating electric field: The occurrence of a resonance frequency, Z. Naturforsch. 36c: 173–177.

    CAS  Google Scholar 

  • Zimmermann, U., Buchner, K. H., and Arnold, W. M., 1984a, Electrofusion of cells: Recent developments and relevance for evolution, in: Charge and Field Effects in Biosystems (M. J. Allen and P. N. R. Usherwood, eds.), pp. 293–318, Abacus Press, Normal, Ill.

    Google Scholar 

  • Zimmermann, U., Vienken, J., Pilwat, G., and Arnold, W. M., 1984b, Electrofusion of cells: principles and potential for the future, in: Cell Fusion, CIBA Foundation Symposium 103, pp. 60–73, Pitman, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bates, G.W., Saunders, J.A., Sowers, A.E. (1987). Electrofusion. In: Sowers, A.E. (eds) Cell Fusion. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9598-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9598-1_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9600-1

  • Online ISBN: 978-1-4757-9598-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics