Skip to main content

Reactive Dopamine Metabolites and Neurotoxicity

Implications for Parkinson’s Disease

  • Chapter
Biological Reactive Intermediates V

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 387))

Abstract

Parkinson’s disease occurs in approximately one percent of individuals over the age of 55. It is characterized by the presence of tremor, rigidity, and bradykinesia. Pathologically, the hallmark of Parkinson’s disease is the progressive degeneration of the dopamine (DA)-containing neurons of the nigrostriatal projection. Neurological deficits associated with the loss of DA neurons do not appear until the degeneration is extensive, presumably due to compensatory properties of the remaining DA neurons and their targets (Bernheimer et al., 1973; Zigmond et al., 1984). The mechanism responsible for the degenerative process is not known, although factors such as genetic predisposition and environmental toxins have been proposed to play a role (Agid et al., 1993). There is also growing evidence that endogenous factors such as oxidative stress and DA itself may contribute to the neurodegenerative process (Cohen, 1983; Agid et al., 1993; Zigmond et al., 1992).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agid Y., Ruberg M., Javoy-Agid R., Hirsch E., Raisman-Vozari R., Vyas S., Baucheux B., Michel P., Kastner A., Blanchard B., Damier P., Villares J. and Zhang, P. (1993) Are dopaminergic neurons selectively vulnerable to Parkinson’s disease? In: Narabayashi H., Ngatsu T., Yanagisawa N. and Mizuno, Y. (eds.), Advances in Neurology, Vol. 60, pp 148-164.

    Google Scholar 

  • Barr G. A., Eckenrode T.C. and Murray M. (1987) Normal development and effects of early deafferentation on choline acetyltransferase, substance P and serotonin-like immunoreactivity in the interpeduncular nucleus. Brain Res. 418, 301–313.

    Article  PubMed  CAS  Google Scholar 

  • Bernheimer H., Birkmayer W., Hornykiewicz O., Jellinger K. and Seitelberger, F. (1973) Brain dopamine and the syndromes of Parkinson and Huntington: Clinical, morphological and neurochemical correlations. J. Neural. Sci. 20, 415–455.

    Article  CAS  Google Scholar 

  • Bradford M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of dye-binding. Anal. Biochem. 72, 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Carstam R., Brinck C, Fornstedt B., Rorsman H. and Rosengren E. (1990) 5-S-Cysteinyldopac in human urine. Acta Derm. Venereol. (Stockh). 70, 373–377.

    CAS  Google Scholar 

  • Cohen G. (1983) The pathobiology of Parkinson’s disease: Biochemical aspects of dopamine neuron senescence. J. Neural Transm. 19 (Suppl), 89–103.

    CAS  Google Scholar 

  • Dexter D.T., Carter C.J., Wells F.R., Javoy-Agid F., Lees A., Jenner P. and Marsden C.D. (1989) Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. J. Neurochem. 52, 381–389.

    Article  PubMed  CAS  Google Scholar 

  • Dexter D.T., Holley A.E., Flitter W.D., Slater T.F., Wells F.R., Daniel S.E., Lees A.J., Jenner P. and Marsden C.D. (1994) Increased levels of lipid hydroperoxides in the parkinsonian substantia nigra: an HPLC and ESR study. Movement Disorders 9, 92–97.

    Article  PubMed  CAS  Google Scholar 

  • Filloux F. and Townsend J.J. (1993) Pre-and post-synaptic neurotoxic effects of dopamine demonstrated by intrastriatal injection. Exp. Neurol. 119, 79–88.

    Article  PubMed  CAS  Google Scholar 

  • Fornstedt B., Bergh I., Rosengren E. and Carlsson, A. (1990a) An improved HPLC-electrochemical detection method for measuring brain levels of 5-S-cysteinyldopamine, 5-S-cysteinyl-3,4-dihydroxypheny-lalanine, and 5-S-cysteinyl-3,4-dihydroxyphenylacetic acid. J. Neurochem. 54, 578–586.

    Article  PubMed  CAS  Google Scholar 

  • Fornstedt B., Brum A., Rosengren E. and Carlsson A. (1989) The apparent autoxidation rate of catechols in dopamine-rich regions of human brains increases with the degree of depigmentation of substantia nigra. J. Neural Transm. 1, 279–295.

    Article  CAS  Google Scholar 

  • Fornstedt B., Pileblad E. and Carlsson A. (1990b) In vivo autoxidation of dopamine in guinea pig striatum increases with age. J. Neurochem. 55, 655–659.

    Article  PubMed  CAS  Google Scholar 

  • Fornstedt B. and Carlsson A. (1991) Vitamin C deficiency facilitates 5-S-cysteinyldopamine formation in guinea pig striatum. J. Neurochem. 56, 407–414.

    Article  PubMed  CAS  Google Scholar 

  • Glantz L.A. and Lewis D.A. (1994) Synaptophysin and not Rab3A immunoreactivity is specifically reduced in the prefrontal cortex of schizophrenic subjects. Soc. Neurosci. Abstr. 20, 622.

    Google Scholar 

  • Graham D.G., Tiffany S.M., Bell W.R. Jr. and Gutknecht W.F. (1978) Autoxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine, 6-hydroxydopamine, and related compounds toward C1300 neuroblastoma cells in vitro. Mol. Pharmacol. 14, 644–653.

    PubMed  CAS  Google Scholar 

  • Graham D.G. (1978) Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones. Mol. Pharmacol. 14, 633–643.

    PubMed  CAS  Google Scholar 

  • Halliwell B. (1992) Reactive oxygen species and the central nervous system. J. Neurochem. 59, 1609–1623.

    Article  PubMed  CAS  Google Scholar 

  • Hastings T.G., Lewis D.A. and Zigmond M.J. (1994) Intrastriatally administered dopamine: Evidence of selective neurotoxicity associated with dopamine oxidation. Soc. Neurosci. Abstr. 20, 413.

    Google Scholar 

  • Hastings T.G. and Zigmond M.J. (1994) Identification of catechol-protein conjugates in neostriatal slices incubated with 3H-dopamine: Impact of ascorbic acid and glutathione. J. Neurochem. 63, 1126–1132.

    Article  PubMed  CAS  Google Scholar 

  • Hastings T.G. (1995) Enzymatic oxidation of dopamine: The role of prostaglandin H synthase. J. Neurochem. 64, 919–924.

    Article  PubMed  CAS  Google Scholar 

  • Hirsch E., Graybiel A.M. and Agid Y.A. (1988) Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease. Nature 334, 345–348.

    Article  PubMed  CAS  Google Scholar 

  • Ito S., Kato T. and Fujita K. (1988) Covalent binding of catechols to proteins through the sulphydryl group. Biochem. Pharmacol. 37, 1707–1710.

    Article  PubMed  CAS  Google Scholar 

  • Kastner A., Hirsch E.C, Lejeune O., Javoy-Agid F., Rascol O. and Agid Y. (1992) Is the vulnerability of neurons in the substantia nigra of patients with Parkinson’s disease related to their neuromelanin content? J. Neurochem. 59, 1080–1089.

    Article  PubMed  CAS  Google Scholar 

  • Kato T., Ito S. and Fujita K. (1986) Tyrosinase-catalyzed binding of 3,4-dihydroxyphenylalanine with proteins through the sulfhydryl group. Biochim. Biophys. Asta 881, 415–421.

    Article  CAS  Google Scholar 

  • Kish S.J., Morito C and Hornykiewicz O. (1985) Glutathione peroxidase activity in Parkinson’s disease brain. Neurosci. Lett. 58, 343–346.

    Article  PubMed  CAS  Google Scholar 

  • Lewis D.A., Melchitzky D.S., Haycock J.W. (1994) Expression and distribution of two isoforms of tyrosine hydroxylase in macaque monkey brain. Brain Res. 656, 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Maguire M.E., Goldmann P.H. and Gilman A.G. (1974) The reaction of [3H]norepinephrine with particulate fractions of cells responsive to catecholamines. Mol. Pharmacol. 10, 563–581.

    CAS  Google Scholar 

  • Mann V.M., Cooper J.M., Daniel S.E., Srai K., Jenner P., Marsden C.D. and Schapira A.H.V. (1994) Complex I, iron, and ferritin in Parkinson’s disease substantia nigra. Ann. Neurol. 36, 876–881.

    Article  PubMed  CAS  Google Scholar 

  • Martilla R.J., Lorentz H., Rinne U.K. (1988) Oxygen toxicity protecting enzymes in Parkinson’s disease. J. Neurol. Sci. 86, 321–31.

    Article  Google Scholar 

  • McLean J.H. and M.T. Shipley (1987) Serotonergic afferents to the rat olfactory bulb: I. Origins and laminar specificity of serotonergic inputs in the adult rat. J. Neurosci. 7, 3016–3028.

    PubMed  CAS  Google Scholar 

  • Michel P.P. and Hefti F. (1990) Toxicity of 6-hydroxydopamine and dopamine for dopaminergic neurons in culture. J. Neurosci. Res. 26, 428–435.

    Article  PubMed  CAS  Google Scholar 

  • Perry T.L., Godin D.V. and Hansen S. (1982) Parkinson’s disease: A disorder due to nigral glutathione deficiency? Neurosci. Lett. 33, 305–310.

    Article  PubMed  CAS  Google Scholar 

  • Rosengren E., Linder-Eliasson E. and Carlsson A. (1985) Detection of 5-S-cysteinyldopamine in human brain. J. Neural Transm. 63, 247–253.

    Article  PubMed  CAS  Google Scholar 

  • Rotman A., Daly J.W. and Creveling C.R. (1976) Oxygen-dependent reaction of 6-hydroxydopamine, 5,6-dihydroxytryptamine, and related compounds with proteins in vitro: A model for cytotoxicity. Mol Pharmacol. 12, 887–899.

    PubMed  CAS  Google Scholar 

  • Saggu H., Cooksey J., Dexter D., Wells F.R., Lees A., Penner P. and Marsden C.D. (1989) A selective increase in particulate Superoxide dismutase activity in parkinsonian substantia nigra. J. Neurochem. 53, 692–697.

    Article  PubMed  CAS  Google Scholar 

  • Saner A. and Thoenen H. (1971) Model experiments on the molecular mechanism of action of 6-hydroxydopamine. Mol. Pharmacol. 7, 147–154.

    PubMed  CAS  Google Scholar 

  • Scheulen M., Wollenberg P., Bolt H.M., Kappus H. and Remmer H. (1975) Irreversible binding of dopa and dopamine metabolites to protein by rat liver microsomes. Biochem. Biophys. Res. Commun. 66, 1396–1400.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt D.J., Ritter J.K., Sonsalla P.K., Hanson R. and Gibb J.W. (1985) Role of dopamine in the neurotoxic effects of methamphetamine. J. Pharmacol. Exp. Ther. 233, 539–544.

    PubMed  CAS  Google Scholar 

  • Sofic E., Paulus W., Jellinger K., Reiderer P. and Youdim M.B.H. (1991) Selective increase of iron in substantia nigra zona compacta of Parkinsonian brains. J. Neurochem. 56, 978–982.

    Article  PubMed  CAS  Google Scholar 

  • Tse D.C.S., McCreery R.L. and Adams R.N (1976) Potential oxidative pathways of brain catecholamines. J. Med. Chem, 19, 37–40.

    Article  PubMed  CAS  Google Scholar 

  • Weinberger J., Nieves-Rosa J. and Cohen G. (1985) Nerve terminal damage in cerebral ischemia: Protective effect of alpha-methyl-para-tyrosine. Stroke 16, 864–870.

    Article  PubMed  CAS  Google Scholar 

  • Zigmond M.J., Acheson A.L., Stachowiak M.K. and Stricker E.M. (1984) Neurochemical compensation after nigrostriatal injury in an animal model of preclinical Parkinsonism. Arch. Neurol. 41, 856–890.

    Article  PubMed  CAS  Google Scholar 

  • Zigmond M.J., Hastings T.G. and Abercrombie, E.D. (1992) Neurochemical responses to 6-hydroxydopamine and L-DOPA therapy: Implications for Parkinson’s disease. Ann. NY Acad. Sci. 648, 71–86.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hastings, T.G., Lewis, D.A., Zigmond, M.J. (1996). Reactive Dopamine Metabolites and Neurotoxicity. In: Snyder, R., et al. Biological Reactive Intermediates V. Advances in Experimental Medicine and Biology, vol 387. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-9480-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-9480-9_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-9482-3

  • Online ISBN: 978-1-4757-9480-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics