Skip to main content

Random Matrix Theory

  • Chapter
The Transition to Chaos

Part of the book series: Institute for Nonlinear Science ((INLS))

  • 657 Accesses

Abstract

Classical conservative systems that undergo a transition to chaos have very complex dynamical behavior, as we have seen in previous chapters. How much of this complex behavior remains in the corresponding quantum systems? That is the question we address in much of the remainder of this book. An essential new result has emerged: quantum systems, whose classical counterpart is chaotic, have spectra whose statistical properties are similar to those of random matrices that extremize information. Thus, any study of the quantum manifestations of chaos requires an analysis of information content of quantum systems using concepts from random matrix theory (RMT). We have attempted to give a complete grounding on random matrix theory in this book. Much of our discussion of random matrix theory is in the appendices, but we give an overview of key results in this chapter. Our analysis of quantum dynamics, the behavior of solutions of the Schrödinger equation, will actually begin in Chapter 6.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bateman, H. (1953): Higher Trancendental Functions, Vol. 2, edited by A. Erdelyi (McGraw-Hill, New York).

    Google Scholar 

  2. Brody, T.A. (1974): Lett. Nuovo Cimento 7 482.

    Article  Google Scholar 

  3. Brody, T.A., Flores, J., French, J.B., Mello, P.A., Pandey, A., and Wong, S.S.M. (1981): Rev. Mod. Phys. 53 385.

    Article  MathSciNet  ADS  Google Scholar 

  4. Brookes, B.C. and Dick, W.F.L. (1969): Introduction to Statistical Methods (Heinemann, London).

    Google Scholar 

  5. Dyson, F.J. (1962a): J. Math. Phys. 3 140.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Dyson, F. J. (1962b): J. Math. Phys. 3 166.

    Article  MathSciNet  ADS  Google Scholar 

  7. Dyson, F.J. (1962c): J. Math. Phys. 3 1191.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Dyson, F.J. and Mehta, M.L. (1963): J. Math. Phys. 4 489.

    Article  Google Scholar 

  9. Gaudin, M. (1961): Nucl. Phys. 25 447.

    Article  MATH  Google Scholar 

  10. Guhr, T., Muller-Groeling, A., and Weidenmuller, H.A. (1998): Phys. Rept 299

    Google Scholar 

  11. Haller, E., Koppel, H., and Cederbaum, L.S. (1983): Chem. Phys. Lett. 101 215.

    Article  ADS  Google Scholar 

  12. Li, W., Reichl, L.E., and Wu, B. (2002): Phys. Rev. E 65 56220.

    Article  ADS  Google Scholar 

  13. Mehta, M.L. (1960): Nucl. Phys. 18 420.

    Article  Google Scholar 

  14. Mehta, M.L. (1991): Random Matrices and the Statistical Theory of Energy Levels, 2nd Edition (Academic Press, New York).

    Google Scholar 

  15. Meyer, S.L. (1975): Data Analysis for Scientists and Engineers (John Wiley and Sons, Inc., New York).

    Google Scholar 

  16. Porter, C.E. (1965): Statistical Theories of Spectra: Fluctuations (Academic Press, New York).

    Google Scholar 

  17. Porter, C.E. and Thomas, R.G. (1956): Phys. Rev. 104 483.

    Article  ADS  Google Scholar 

  18. Reichl, L.E. (1998): A Modern Course in Statistical Physics, Second Edition (John Wiley and Sons, New York)

    MATH  Google Scholar 

  19. Terasaka, T. and Matsushita, T. (1985): Phys. Rev. A 32 538.

    Article  ADS  Google Scholar 

  20. Venkataraman, R. (1982): J. Phys. B 15 4293.

    Article  ADS  Google Scholar 

  21. Wigner, E.P. (1951): Ann. Math. 53 36.

    Article  MathSciNet  MATH  Google Scholar 

  22. Wigner, E.P. (1955): Ann. Math. 62 548.

    Article  MathSciNet  MATH  Google Scholar 

  23. Wigner, E.R (1957a): Ann. Math. 65 203.

    Article  MathSciNet  MATH  Google Scholar 

  24. Wigner, E.P. (1957b): Can. Math. Congr. Proc. (Univ. of Toronto Press, Toronto, Canada), p. 174. Reprinted in [Porter 1965].

    Google Scholar 

  25. Wigner, E.P. (1958): Ann. Math. 67 325.

    Article  MathSciNet  MATH  Google Scholar 

  26. Wigner, E.P. (1959): Conference on Neutron Physics by Time of Flight, Gatlinburg, Tennessee, November 1956, Oak Ridge Natl. Lab. Rept. ORNL-2309, p.67 (1959). Reprinted in [Porter 1965], p. 188.

    Google Scholar 

  27. Wilson, K. G. (1962): J. Math. Phys. 3 1040.

    Article  ADS  MATH  Google Scholar 

  28. Zyczkowski, K. (1991): in Quantum Chaos, edited by H.A. Cerdeira, R. Ramaswamy, M.C. Gutzwiller, and G. Casati (World Scientific, Singapore).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Reichl, L.E. (2004). Random Matrix Theory. In: The Transition to Chaos. Institute for Nonlinear Science. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-4350-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4350-0_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-3163-4

  • Online ISBN: 978-1-4757-4350-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics