Skip to main content

Inapproximability of some Geometric and Quadratic Optimization Problems

  • Chapter
Approximation and Complexity in Numerical Optimization

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 42))

Abstract

Since various measurements of convex polytopes play an important role in many applications, it is useful to know how efficiently such measurements can be computed or at least approximated. The present study, set in Euclidean n-space, focuses on the efficiency of polynomial-time algorithms for computing or approximating four “radii” of polytopes (diameter, width, inradius, circumradius) and the maximum of the Euclidean norm over a polytope. These functionals are known to be tractable in some cases, and the tractability results are here complemented by showing for each of the remaining cases that unless ℙ = ℕℙ, the performance ratios of polynomial-time approximation algorithms are uniformly bounded away from 1. These inapproximability results are established by means of a transformation from the problem Max-Not-All-Equal-3-Sat, and they apply even to very small classes of familiar polytopes (simplices, parallelotopes, and close relatives). They are sharp in the sense that the related problems are indeed approximable within a constant performance ratio. The results for parallelotopes apply also to the quadratic pseudoboolean optimization problems of maximizing a positive definite quadratic form over [0, l]n or [−1,1]n.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.L. Bodlaender, P. Gritzmann, V. Klee, and J. van Leeuwen, Computational complexity of norm-maximization, Combinatorica 10 (1990), 203–225.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Brieden, P. Gritzmann, R. Kannan, V. Klee, L. Lovâsz, and M. Simonovits, Approximation of diameters: Randomization doesn’t help, Proc. 39th IEEE FOCS (1998), 244–251.

    Google Scholar 

  3. A. Brieden, P. Gritzmann, R. Kannan, V. Klee, L. Lovâsz, and M. Simonovits, Deterministic and randomized polynomial-time approximation of radii, to be submitted.

    Google Scholar 

  4. D.H. Doehlert and V.L. Klee, Experimental designs through level reduction of the d-dimensional cuboctahedron, Discrete Math. 2 (1972), 309–334.

    Article  MathSciNet  MATH  Google Scholar 

  5. D.H. Doehlert, Uniform designs, J. Royal Statistical Soc. (Section C) 19 (1970), 231–239.

    Google Scholar 

  6. H.G. Eggleston, Convexity, Cambridge Univ. Press, 1958, 1969.

    Book  MATH  Google Scholar 

  7. U. Faigle, W. Kern and M. Streng, Note on the computational complexity of j-radii of polytopes in ll, Math. Programming 73 (1996), 1–5.

    MathSciNet  MATH  Google Scholar 

  8. M. Fiedler, A geometric approach to the Laplacian matrix of a graph, in Combinatorial and Graph-Theoretical Problems in Linear Algebra (R.A. Brualdi, S. Friedland, and V. Klee, eds.), IMA Vol. Math. Appl. 50 (1993), 73–98. Springer, New York.

    Google Scholar 

  9. M.X. Goemans and D.P. Williamson, Improved approximation algorithms for maximum cut and satisfiability, J. ACM 42 (1995), 1115–1145.

    Article  MathSciNet  MATH  Google Scholar 

  10. P. Gritzmann and A. Hufnagel, On the algorithmic complexity of Minkowski’s reconstruction theorem., J. London Math. Soc. (1999), in print.

    Google Scholar 

  11. P. Gritzmann, L. Habsieger, and V. Klee, Good and bad radii of convex polygons, SIAM J. Comput. 20 (91), 395–403.

    Google Scholar 

  12. P. Gritzmann and V. Klee, On the 0–1-maximization of positive definite quadratic forms, Operations Research Proceedings 1988 (Berlin) D. Press-mar et al, eds.), DGOR, Springer, 1989, pp. 222–227.

    Google Scholar 

  13. P. Gritzmann and V. Klee, Inner and outer j-radii of convex bodies in finite-dimensional normed spaces, Discrete Comput. Geom. 7 (1992), 255280.

    Google Scholar 

  14. P. Gritzmann and V. Klee, Computational complexity of inner and outer j-radii of polytopes in finite-dimensional normed spaces, Math. Programming 59 (1993), 163–213.

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Grötschel, L. LovAsz, and A. Schrijver, Geometric Algorithms and Combinatorial Optimization, Springer, Berlin, 1988, 1993.

    Book  MATH  Google Scholar 

  16. J. Hâstad, Some optimal inapproximability results, Tech. Report TR97037, Electronic Colloquium on Computational Complexity, 1997.

    Google Scholar 

  17. T. Jansen, Introduction to the theory of complexity and approximation algorithms, in [19], pp. 5–28.

    Google Scholar 

  18. V. Kann, J. Lagergren, and A. Panconesi, Approximability of maximum splitting of k-sets and some other apx-complete problems, Inform. Process. Lett. 58 (1996), 105–110.

    Article  MathSciNet  MATH  Google Scholar 

  19. E.W. Mayr, H.J. Prömel, and A. Steger (eds.), Lectures on Proof Verification and Approximation Algorithms, Lecture Notes in Computer Science, No. 1367, Springer, Berlin, 1998.

    Google Scholar 

  20. H. Minkowski, Allgemeine Lehrsätze liber konvexe Polyeder, Nachr. Ges. Wiss. Göttingen (1897), 198–219, reprinted, Ges. Abh. Bd. II (Leipzig u. Berlin, 1911 ) 230–276.

    Google Scholar 

  21. H. Minkowski, Volumen und Oberfläche, Math. Ann. 57 (1903), 447–495.

    Article  MathSciNet  MATH  Google Scholar 

  22. B. Mohar and S. Poljak, Eigenvalues in combinatorial optimization, in Combinatorial and Graph-Theoretical Problems in Linear Algebra (R.A. Brualdi, S. Friedland, and V. Klee, eds.), IMA Vol. Math. Appl. 50 (1993), 107–151. Springer, New York.

    Google Scholar 

  23. C.H. Papadimitriou and M. Yannakakis, Optimization, approximation, and complexity classes, J. Comput. System Sci. 43 (1991), 425–440.

    Article  MathSciNet  MATH  Google Scholar 

  24. C.A. Rogers and G.C. Shephard, The difference body of a convex body, Arch. Math. 8 (1957), 220–233.

    MATH  Google Scholar 

  25. Y. Ye, Approximating quadratic programming with bound and quadratic constraints, Math. Programming 84 (1999), 219–226.

    MATH  Google Scholar 

  26. U. Zwick, Approximation algorithms for constraint satisfaction problems involving at most three variables per constraint, Proc. 9th Ann. ACM-SIAM Symp. on Disc. Algo. (1998), 201–210.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Brieden, A., Gritzmann, P., Klee, V. (2000). Inapproximability of some Geometric and Quadratic Optimization Problems. In: Pardalos, P.M. (eds) Approximation and Complexity in Numerical Optimization. Nonconvex Optimization and Its Applications, vol 42. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3145-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3145-3_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4829-8

  • Online ISBN: 978-1-4757-3145-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics