Skip to main content

Continuous-based Heuristics for Graph and Tree Isomorphisms, with Application to Computer Vision

  • Chapter
Approximation and Complexity in Numerical Optimization

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 42))

Abstract

We present a new (continuous) quadratic programming approach for graph- and tree-isomorphism problems which is based on an equivalent maximum clique formulation. The approach is centered around a fundamental result proved by Motzkin and Straus in the mid-1960s, and recently expanded in various ways, which allows us to formulate the maximum clique problem in terms of a standard quadratic program. The attractive feature of this formulation is that a clear one-to-one correspondence exists between the solutions of the quadratic programs and those in the original, combinatorial problems. To approximately solve the program we use the so-called “replicator” equations, a class of straightforward continuous- and discrete-time dynamical systems developed in various branches of theoretical biology. We show how, despite their inherent inability to escape from local solutions, they nevertheless provide experimental results which are competitive with those obtained using more sophisticated mean-field annealing heuristics. Application of this approach to shape matching problems arising in computer vision and pattern recognition are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and the hardness of approximation problems. In Proc. 33rd Ann. Symp. Found. Comput. Sci., pages 14–23. Pittsburgh, PA, 1992.

    Chapter  Google Scholar 

  2. L. Babai, P. Erdös, and S. M. Selkow. Random graph isomorphism. SIAM J. Comput., 9 (3): 628–635, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  3. H. G. Barrow and R. M. Burstall. Subgraph isomorphism, matching relational structures, and maximal cliques. Inform. Process. Lett., 4 (4): 83–84, 1976.

    Article  MATH  Google Scholar 

  4. L. E. Baum and J. A. Eagon. An inequality with applications to statistical estimation for probabilistic functions of markov processes and to a model for ecology. Bull. Amer. Math. Soc., 73: 360–363, 1967.

    Article  MathSciNet  MATH  Google Scholar 

  5. I. M. Bomze. Evolution towards the maximum clique. J. Global Optim., 10: 143164, 1997.

    Google Scholar 

  6. I. M. Bomze, M. Budinich, P. M. Pardalos, and M. Pelillo. The maximum clique problem. In D.-Z. Du and P. M. Pardalos, editors, Handbook of Combinatorial Optimization, volume 4. Kluwer Academic Publishers, Boston, MA, 1999.

    Google Scholar 

  7. I. M. Bomze, M. Budinich, M. Pelillo, and C. Rossi. Annealed replication: A new heuristic for the maximum clique problem. Discr. Appl. Math.,1999. to appear.

    Google Scholar 

  8. I. M. Bomze, M. Pelillo, and R. Giacomini Evolutionary approach to the maximum clique problem: Empirical evidence on a larger scale. In I. M. Bomze, T. Csendes, R. Horst, and P. M. Pardalos, editors, Developments in Global Optimization, pages 95–108. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1997.

    Chapter  Google Scholar 

  9. R. B. Boppana, J. Hastad, and S. Zachos. Does co-NP have short interactive proofs? Inform. Process. Lett., 25: 127–132, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  10. R. Brockett and P. Maragos. Evolution equations for continuous-scale morphology. In Proceedings of the IEEE Conference on Acoustics, Speech and Signal Processing, San Francisco, CA, March 1992.

    Google Scholar 

  11. R. Durbin and D. Willshaw. An analog approach to the travelling salesman problem using an elastic net method. Nature, 326: 689–691, 1987.

    Article  Google Scholar 

  12. Y. Fu and P. W. Anderson. Application of statistical mechanics to NP-complete problems in combinatorial optimization. J. Phys. A, 19: 1605–1620, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  13. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, San Francisco, CA, 1979.

    Google Scholar 

  14. L. E. Gibbons, D. W. Hearn, and P. M. Pardalos. A continuous based heuristic for the maximum clique problem. In D. S. Johnson and M. Trick, editors, Cliques, Coloring, and Satisfiability—Second DIMACS Implementation Challenge, pages 103–124. American Mathematical Society, 1996.

    Google Scholar 

  15. L. E. Gibbons, D. W. Hearn, P. M. Pardalos, and M. V. Ramana. Continuous characterizations of the maximum clique problem. Math. Oper. Res., 22: 754–768, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Gold and A. Rangarajan. A graduated assignment algorithm for graph matching. IEEE Trans. Pattern Anal. Machine Intell., 18 (4): 377–388, 1996.

    Article  Google Scholar 

  17. M. Grötschel, L. Lovâsz, and A. Schrijver. Geometric Algorithms and Combinatorial Optimization. Springer-Verlag, Berlin, 1988.

    Book  MATH  Google Scholar 

  18. F. Harary. Graph Theory. Addison-Wesley, Reading, MA, 1969.

    Google Scholar 

  19. J. Hastad. Clique is hard to approximate within n1—E. In Proc. 37th Ann. Symp. Found. Comput. Sci., pages 627–636, 1996.

    Google Scholar 

  20. J. Hofbauer. Imitation dynamics for games. Collegium Budapest, preprint, 1995.

    Google Scholar 

  21. J. Hofbauer and K. Sigmund. The Theory of Evolution and Dynamical Systems. Cambridge University Press, Cambridge, UK, 1988.

    MATH  Google Scholar 

  22. J. J. Hopfield and D. W. Tank. Neural computation of decisions in optimization problems. Biol. Cybern., 52: 141–152, 1985.

    MathSciNet  MATH  Google Scholar 

  23. A. Jagota. Approximating maximum clique with a Hopfield network. IEEE Trans. Neural Networks, 6: 724–735, 1995.

    Article  Google Scholar 

  24. D. S. Johnson. The NP-completeness column: An ongoing guide. J. Algorithms, 9: 426–444, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  25. B. B. Kimia, A. Tannenbaum, and S. W. Zucker. Shape, shocks, and deformations I: The components of two-dimensional shape and the reaction-diffusion space. Int. J. Comp. Vision, 15: 189–224, 1995.

    Article  Google Scholar 

  26. J. J. Kosowsky and A. L. Yuille. The invisible hand algorithm: Solving the assignment problem with statistical physics. Neural Networks, 7: 477–490, 1994.

    Article  MATH  Google Scholar 

  27. D. Kozen. A clique problem equivalent to graph isomorphism. SIGACT News, pages 50–52, Summer 1978.

    Google Scholar 

  28. P. D. Lax. Shock waves and entropy. In E. H. Zarantonello, editor, Contributions to Nonlinear Functional Analysis, pages 603–634, New York, 1971. Acad. Press.

    Google Scholar 

  29. J. T. Li, K. Zhang, K. Jeong, and D. Shasha. A system for approximate tree matching. IEEE Trans. Knowledge Data Eng., 6: 559–571, 1994.

    Article  Google Scholar 

  30. V. Losert and E. Akin. Dynamics of games and genes: Discrete versus continuous time. J. Math. Biol., 17: 241–251, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  31. S. Y. Lu. A tree-matching algorithm based on node splitting and merging. IEEE Trans. Pattern Anal. Machine Intell., 6: 249–256, 1984.

    Article  MATH  Google Scholar 

  32. D. Marr and K. H. Nishihara. Representation and recognition of the spatial organization of three-dimensional shapes. Proc. R. Soc. Lond. B, 200: 269–294, 1978.

    Article  Google Scholar 

  33. D. W. Matula. An algorithm for subtree identification. Siam Rev., 10: 273–274, 1968.

    Google Scholar 

  34. T. S. Motzkin and E. G. Straus. Maxima for graphs and a new proof of a theorem of Turd’’’. Canad. J. Math., 17: 533–540, 1965.

    Article  MathSciNet  MATH  Google Scholar 

  35. M. Neff, R. Byrd, and O. Rizk. Creating and querying hierarchical lexical databases. In Proc. 2nd Conf. Appl. Natural Language Process., pages 84–93, 1988.

    Chapter  Google Scholar 

  36. M. Ohlsson, C. Peterson, and B. Söderberg. Neural networks for optimization problems with inequality constraints: The knapsack problem. Neural Computation, 5: 331–339, 1993.

    Article  Google Scholar 

  37. E. M. Palmer. Graphical Evolution: An Introduction to the Theory of Random Graphs. John Wiley & Sons, New York, 1985.

    MATH  Google Scholar 

  38. P. M. Pardalos. Continuous approaches to discrete optimization problems. In G. D. Pillo and F. Giannessi, editors, Nonlinear Optimization and Applications, pages 313–328. Plenum Press, 1996.

    Google Scholar 

  39. P. M. Pardalos and A. T. Phillips. A global optimization approach for solving the maximum clique problem. Int. J. Comput. Math., 33: 209–216, 1990.

    Article  MATH  Google Scholar 

  40. M. Pelillo. Relaxation labeling networks for the maximum clique problem. J. Artif. Neural Networks, 2: 313–328, 1995.

    Google Scholar 

  41. M. Pelillo. Replicator equations, maximal cliques, and graph isomorphism. Neural Computation, 11 (8): 2023–2045, 1999.

    Article  Google Scholar 

  42. M. Pelillo and A. Jagota. Feasible and infeasible maxima in a quadratic program for maximum clique. J. Artif. Neural Networks, 2: 411–420, 1995.

    Google Scholar 

  43. M. Pelillo, K. Siddiqi, and S. W. Zucker. Attributed tree matching and maximum weight cliques. In Proc. ICIAP’99–10th Int. Conf. on Image Analysis and Processing. IEEE Computer Society Press, 1999.

    Google Scholar 

  44. A. Rangarajan, S. Gold, and E. Mjolsness. A novel optimizing network architecture with applications. Neural Computation, 8: 1041–1060, 1996.

    Article  Google Scholar 

  45. A. Rangarajan and E. Mjolsness. A lagrangian relaxation network for graph matching. IEEE Trans. Neural Networks, 7 (6): 1365–1381, 1996.

    Article  Google Scholar 

  46. S. W. Reyner. An analysis of a good algorithm for the subtree problem. SIAM J. Comput., 6: 730–732, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  47. H. Rom and G. Medioni. Hierarchical decomposition and axial shape description. IEEE Trans. Pattern Anal. Machine Intell., 15 (10): 973–981, 1993.

    Article  Google Scholar 

  48. H. Samet. Design and Analysis of Spatial Data Structures. Addison-Wesley, Reading, MA, 1990.

    Google Scholar 

  49. U. Schöning. Graph isomorphism is in the low hierarchy. J. Comput. Syst. Sci., 37: 312–323, 1988.

    Article  MATH  Google Scholar 

  50. B. A. Shapiro and K. Zhang. Comparing multiple RNA secondary structures using tree comparisons. Comput. Appl. Biosci., 6: 309–318, 1990.

    Google Scholar 

  51. D. Shasha, J. T. L. Wang, K. Zhang, and F. Y. Shih. Exact and approximate algorithms for unordered tree matching. IEEE Trans. Syst. Man Cybern., 24: 668678, 1994.

    Google Scholar 

  52. K. Siddiqi, A. Shokoufandeh, S. J. Dickinson, and S. W. Zucker. Shock graphs and shape matching. Int. J. Comp. Vision, to appear, 1999.

    Google Scholar 

  53. P. D. Simié. Constrained nets for graph matching and other quadratic assignment problems. Neural Computation, 3: 268–281, 1991.

    Article  Google Scholar 

  54. J. W. Weibull. Evolutionary Game Theory. MIT Press, Cambridge, MA, 1995.

    MATH  Google Scholar 

  55. H. S. Wilf. Spectral bounds for the clique and independence numbers of graphs. J. Combin. Theory, Ser. B, 40: 113–117, 1986.

    MathSciNet  MATH  Google Scholar 

  56. S. Zhu and A. L. Yuille. FORMS: A flexible object recognition and modeling system. Int. J. Comp. Vision, 20 (3): 187–212, 1996.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pelillo, M., Siddiqi, K., Zucker, S.W. (2000). Continuous-based Heuristics for Graph and Tree Isomorphisms, with Application to Computer Vision. In: Pardalos, P.M. (eds) Approximation and Complexity in Numerical Optimization. Nonconvex Optimization and Its Applications, vol 42. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3145-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3145-3_25

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4829-8

  • Online ISBN: 978-1-4757-3145-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics