Skip to main content

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 42))

  • 629 Accesses

Abstract

We consider the Steiner Problem in L 2 p , which is a plane equiped with the p-norm. Steiner’s Problem is the “Problem of shortest connectivity”, that means, given a finite set N of points in the plane, search for a network interconnecting these points with minimal length. This shortest network must be a tree and is called a Steiner Minimal Tree (SMT). It may contain vertices different from the points which are to be connected. Such points are called Steiner points. If we do not allow Steiner points, that means, we only connect certain pairs of the given points, we get a tree which is called a Minimum Spanning Tree (MST) for N.

Steiner’s Problem is very hard as well in combinatorial as in computational sense, but on the other hand, the determination of an MST is simple. Consequently, we are interested in the greatest lower bound for the ratio between the lengths of these both trees:

EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamyBaiaacI % cacaaIYaGaaiilaiaadchacaGGPaGaaiOoaiabg2da9iGacMgacaGG % UbGaaiOzaiaacUhadaWcaaqaaiaadYeacaGGOaGaam4uaiaad2eaca % WGubGaaGjcVlaadAgacaWGVbGaamOCaiaayIW7caWGobGaaiykaiaa % ygW7caaMb8UaaGzaVlaaygW7caaMb8UaaGzaVdqaaiaadYeacaGGOa % Gaam4uaiaad2eacaWGubGaaGjcVlaadAgacaWGVbGaamOCaiaayIW7 % caWGobGaaiykaaaacaGG6aGaamOtaiaayIW7cqGHgksZcaWGmbWaa0 % baaSqaaiaadchacaaMi8oabaGaaGOmaaaakiaayIW7caWGPbGaam4C % aiaayIW7caaMi8UaamyyaiaayIW7caWGMbGaamyAaiaad6gacaWGPb % GaamiDaiaadwgacaaMi8Uaam4CaiaadwgacaWG0bGaaiyFaaaa!7DF1!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$$m(2,p): = \inf \{ \frac{{L(SMT{\kern 1pt} for{\kern 1pt} N)}}{{L(SMT{\kern 1pt} for{\kern 1pt} N)}}:N{\kern 1pt} \subseteq L_{p{\kern 1pt} }^2{\kern 1pt} is{\kern 1pt} {\kern 1pt} a{\kern 1pt} finite{\kern 1pt} set\} $$

which is called the Steiner ratio (of L 2 p ).

We look for estimates for m(2, p), depending on the parameter p, and, on the other hand, we will determine general upper bounds for the Steiner ratio of L 2 p .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Albrecht. Das Steinerverhältnis endlich dimensionaler L p -Räumen. Master’s thesis, Ernst-Moritz-Arndt Universität Greifswald, 1997. Diplomarbeit.

    Google Scholar 

  2. J. Albrecht and D. Cieslik. The Steiner ratio of finite dimensional 4-spaces. To appear in Advances in Steiner Trees, 1998.

    Google Scholar 

  3. D. Cheriton and R.E. Tarjan. Finding Minimum Spanning Trees. SIAM J. Comp., 5: 724–742, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  4. F.R.K. Chung and R.L. Graham. A new bound for Euclidean Steiner Minimal Trees. Ann. N.Y. Acad. Sci., 440: 328–346, 1985.

    Article  MathSciNet  Google Scholar 

  5. F.R.K. Chung and F.K. Hwang. A lower bound for the Steiner Tree Problem. SIAM J. Appl. Math., 34: 27–36, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  6. D. Cieslik. The Steiner-ratio in Banach-Minkowski planes. In R. Bodendieck, editor, Contemporary Methods in Graph Theory, pages 231–247. Bibliographisches Institut (BI), Mannheim, 1990.

    Google Scholar 

  7. D. Cieslik. Steiner Minimal Trees. Kluwer Academic Publishers, 1998.

    Google Scholar 

  8. D. Cieslik. The Steiner ratio of L2k. to appear in Applied Discrete Mathematics.

    Google Scholar 

  9. D. Cieslik and J. Linhart. Steiner Minimal Trees in LP Discrete Mathematics, 155: 39–48, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  10. E.J. Cockayne. On the Steiner Problem. Canad. Math. Bull., 10: 431–450, 1967.

    Article  MathSciNet  MATH  Google Scholar 

  11. D.Z. Du, B. Gao, R.L. Graham, Z.C. Liu, and P.J. Wan. Minimum Steiner Trees in Normed Planes. Discrete and Computational Geometry, 9: 351–370, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  12. D.Z. Du and F.K. Hwang. A new bound for the Steiner Ratio. Trans. Am. Math. Soc., 278: 137–148, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  13. D.Z. Du and F.K. Hwang. An Approach for Proving Lower Bounds: Solution of Gilbert-Pollak’s conjecture on Steiner ratio. In Proc. of the 31st Ann. Symp. on Foundations of Computer Science, St. Louis, 1990.

    Google Scholar 

  14. D.Z. Du and F.K. Hwang. Reducing the Steiner Problem in a normed space. SIAM J. Computing, 21: 1001–1007, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  15. D.Z. Du, F.K. Hwang, and E.N. Yao. The Steiner ratio conjecture is true for five points. J. Combin. Theory, Ser. A, 38: 230–240, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  16. D.Z. Du, E.Y. Yao, and F.K. Hwang. A Short Proof of a Result of Pollak on Steiner Minimal Trees. J. Combin. Theory, Ser. A, 32: 396–400, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  17. P. Fermat. Abhandlungen über Maxima und Minima. Number 238. Oswalds Klassiker der exakten Wissenschaften, 1934.

    Google Scholar 

  18. B. Gao, D.Z. Du and R.L. Graham. A Tight Lower Bound for the Steiner Ratio in Minkowski Planes. Discrete Mathematics, 142: 49–63, 1993.

    Article  MathSciNet  Google Scholar 

  19. M.R. Garey, R.L. Graham, and D.S. Johnson. The complexity of computing Steiner Minimal Trees. SIAM J. Appl. Math., 32: 835–859, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  20. M.R. Garey and D.S. Johnson. The rectilinear Steiner Minimal Tree Problem is.NP-complete. SIAM J. Appl. Math., 32: 826–834, 1977.

    Article  MathSciNet  MATH  Google Scholar 

  21. M.R. Carey and D.S. Johnson. Computers and Intractibility. San Francisco, 1979.

    Google Scholar 

  22. C.F. Gauß. Briefwechsel Gauß-Schuhmacher. In Werke Bd. X,1, pages 459–468. Göttingen, 1917.

    Google Scholar 

  23. E.N. Gilbert and H.O. Pollak. Steiner Minimal Trees. SIAM J. Appl. Math., 16: 1–29, 1968.

    Article  MathSciNet  MATH  Google Scholar 

  24. R.L. Graham and P. Hell. On the History of the Minimum Spanning Tree Problem. Ann. Hist. Comp., 7: 43–57, 1985.

    Article  MathSciNet  MATH  Google Scholar 

  25. R.L. Graham and F.K. Hwang. A remark on Steiner Minimal Trees. Bull. of the Inst. of Math. Ac. Sinica, 4: 177–182, 1976.

    MathSciNet  MATH  Google Scholar 

  26. F.K. Hwang. On Steiner Minimal Trees with rectilinear distance. SIAM J. Appl. Math., 30: 104–114, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  27. F.K. Hwang, D.S. Richards, and P. Winter. The Steiner Tree Problem. North-Holland, 1992.

    Google Scholar 

  28. J.B. Kruskal. On the shortest spanning subtree of a graph and the travelling salesman problem. Proc. of the Am. Math. Soc., 7: 48–50, 1956.

    Article  MathSciNet  MATH  Google Scholar 

  29. Z.C. Liu and D.Z. Du. On Steiner Minimal Trees with Lp Distance. Algorithmica, 7: 179–192, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  30. H.O. Pollak. Some remarks on the Steiner Problem. J. Combin. Theory, Ser. A, 24: 278–295, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  31. J.H. Rubinstein and D.A. Thomas. The Steiner Ratio conjecture for six points. J. Combin. Theory, Ser. A, 58: 54–77, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  32. P.J. Wan, D.Z. Du, and R.L. Graham. The Steiner ratio of the Dual Normed Plane. Discrete Mathematics, 171: 261–275, 1997.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Albrecht, J., Cieslik, D. (2000). The Steiner Ratio of L p -planes. In: Pardalos, P.M. (eds) Approximation and Complexity in Numerical Optimization. Nonconvex Optimization and Its Applications, vol 42. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3145-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3145-3_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4829-8

  • Online ISBN: 978-1-4757-3145-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics