Skip to main content

Complexity and experimental evaluation of primal-dual shortest path tree algorithms

  • Chapter

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 42))

Abstract

The Shortest Path Tree problem (SPT) is a classical and important combinatorial problem. It has been widely studied in the past decades leading to the availability of a great number of algorithms adapted to solve the problem in various special conditions and/or constraint formulations ([1],[19],[20]).

The scope of this work is to provide an extensive treatment of shortest path problems. It starts covering the major classical approaches and proceedes focusing on the auction algorithm and some of its recently developed variants. There is a discussion of the theoretical and practical performance of the treated methods and numerical results are reported in order to compare their effectiveness.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.K. Ahuja, T.L. Magnanti, and J.B. Orlin, (1993), Network Flows: Theory, Algorithms and Applications, Prentice-Hall Englewood Cliffs, NJ.

    MATH  Google Scholar 

  2. R. Bellman, (1957) Dynamic Programming, Priceton Univ. Press, Princeton, N.J., 1957

    MATH  Google Scholar 

  3. L.R.,Jr. Ford, Network Flow Theory,Report P-923, The Rand Corporation, Santa Monica, CA.

    Google Scholar 

  4. D. Bertsekas, (1979), “A distributed Algorithm for the Assignment Problem”, Lab. for Information and Decision Systems Working Paper, MIT.

    Google Scholar 

  5. D. Bertsekas, (1985), “A distributed asynchronous relaxation algorithm for the Assignment Problem”, 24th IEEE Conference on Decision and Control, Ft Lauderdale, Fla., 1703–1704.

    Google Scholar 

  6. D. Bertsekas, (1988), “The Auction Algorithm: A distributed relaxation method for the assignment problems”, Annals of Operation Research, v. 14, 105–123.

    Article  MathSciNet  MATH  Google Scholar 

  7. D. Bertsekas, D.A. Castanon, (1989), “The Auction Algorithm for minimum cost network flow problem”, Lab. For Information and Decision Systems, Report LIDS-P-1925, MIT.

    Google Scholar 

  8. D. Bertsekas, D.A. Castanon, (1989), “The Auction Algorithm for transportation problems”, Annals of Operation Research, v. 20, 67–96.

    Article  MathSciNet  MATH  Google Scholar 

  9. D. Bertsekas, D.A. Castanon, (1991), “A generic auction algorithm for the minimum cost network flow problem”, Lab. For Information and Decision Systems, Report LIDS-P-2084, MIT.

    Google Scholar 

  10. D. Bertsekas, (1991), “The Auction Algorithm for Shortest Paths”, SIAM J. on Optimization, v. 1, 425–447.

    Article  MathSciNet  MATH  Google Scholar 

  11. D. Bertsekas, (1991), Linear networks optimization: Algorithms and Codes,MIT Press.

    Google Scholar 

  12. D. Bertsekas, S. Pallottino, and M.G. Scutellâ, (1995), “Polynomial auction algorithms for Shortest Paths”, Computational Optimization and Application, vol. 4, 99–125.

    Article  MATH  Google Scholar 

  13. D.P. Bertsekas, (1998), Network Optimization: Continuous and Discrete Models, Athena Scientific.

    MATH  Google Scholar 

  14. R. Cerulli, R. De Leone, and G. Piacente, (1994), “A modified Auction Algorithm for the shortest path problem”, Optimization Methods and Software, v. 4.

    Google Scholar 

  15. R. Cerulli, P. Festa, and G. Raiconi, (1997), “Graph Collapsing in Auction Algorithms”, Tech. Report 6/97, D.I.A. R. M. Capocelli, University of Salerno, submitted to Computational Optimization and Application.

    Google Scholar 

  16. R. Cerulli, P. Festa, and G. Raiconi, (1997), “An Efficient Auction Algorithm for the Shortest Path Problem Using Virtual Source Concept”, Tech. Report 7/97, D.I.A. R. M. Capocelli, University of Salerno, submitted to Networks.

    Google Scholar 

  17. R.B. Dial, “Algorithm 360: Shortest Path Forest with Topological Ordering”, Comm. ACM, vol. 12, 632–633.

    Google Scholar 

  18. E. Dijkstra, (1959), “A Note on Two Problems in Connexion with Graphs”, Numer. Math., vol. 1, 269–271.

    Article  MathSciNet  MATH  Google Scholar 

  19. G. Gallo, S. Pallottino, (1986), “Shortest Path Methods: A Unified Approach”, Math. Programming Study, vol. 26, 38–64.

    Article  MathSciNet  MATH  Google Scholar 

  20. G. Gallo, S. Pallottino, (1988) “Shortest Path Methods”, Ann. Oper. Res., vol. 13, 3–79.

    Article  MathSciNet  Google Scholar 

  21. B.V. Chernassky, A.V. Goldberg, and T. Radzik, (1996), “Shortest path algorithms: Theory and experimental evaluation”, Math. Programm., vol. 73, 129–174.

    Google Scholar 

  22. D. Klingman, A. Napier, and J. Stutz, (1974), “NETGEN–A program for generating large scale (un) capacitated assignment, transportation, and minimum cost flow network problems”, Management Science, v. 20, 814–822.

    Article  MathSciNet  MATH  Google Scholar 

  23. S. Pallottino, M.G. Scutellâ, (1991), “Strongly polynomial Auction Algorithms for shortest path”, Ricerca Operativa, vol. 21, No. 60.

    Google Scholar 

  24. G. Gallo, S. Pallottino, C. Ruggeri, and G. Storchi, (1984), “Metodi ed algoritmi per la determinazione di cammini minimi”, Monografie di Software Matematico, n. 29.

    Google Scholar 

  25. C.H. Papadimitriou, K. Steiglitz, (1982), Combinatorial Optimization: Algorithms and Complexity, Practice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Festa, P., Cerulli, R., Raiconi, G. (2000). Complexity and experimental evaluation of primal-dual shortest path tree algorithms. In: Pardalos, P.M. (eds) Approximation and Complexity in Numerical Optimization. Nonconvex Optimization and Its Applications, vol 42. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-3145-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3145-3_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4829-8

  • Online ISBN: 978-1-4757-3145-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics