Skip to main content

Geophysical Aspects

  • Chapter
Convection in Porous Media
  • 407 Accesses

Abstract

Most of the studies of convection in porous media published before 1970 were motivated by geophysical applications, and many published since have geophysical ramifications; see, for example, the reviews bys Cheng (1978, 1985b). On the other hand, geothermal reservoir modeling involves several features which are outside the scope of this book. Relevant reviews include those by Donaldson (1982), Grant (1983), O’Sullivan (1985a), Bodvarsson et al. (1986), Bjornsson and Stefansson (1987), Lai et al. (1994), and McKibbin (1998). In this chapter we discuss a number of topics which involve additional physical processes or which led to theoretical developments beyond those which we have already covered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • Albert, M. R. 1995 Advective-diffusive heat transfer in snow. ASME Int. Mech. Cong. Expos., San Francisco, Paper 95-Wa/HT-44.

    Google Scholar 

  • Bergman, M. I. and Fearn, D. R. 1994 Chimneys on the Earths inner-outer core boundary? Geophys. Res. Leu. 21, 477-480.

    Google Scholar 

  • BjOrlykke, K., Mo, A. and Palm, E. 1988 Modelling of thermal convection i n sedimentary basins and its relevance to diagenetic reactions. Marine Petrol. Geol. 5, 338-351.

    Google Scholar 

  • Bjornsson, S. and Stefansson, V. 1987 Heat and mass transport in geothermal reservoirs. Advances in Transport Phenomena in Porous Media (eds. J. Bear and M. Y. Corapcioglu). Martinus Nijhoff, Amsterdam, The Netherlands, pp. 145 - 153.

    Google Scholar 

  • Bodvarsson, G. S., Pruess, K. and Lippmann, M. J. 1986 Modeling of geothermal systems. J. Petrol. Tech. 38, 1007-1021.

    Google Scholar 

  • Cheng, P. 1978 Heat transfer in geothermal systems. Adv. Heat Transfer 14, 1-105.

    Google Scholar 

  • Cheng, P. 1985b Geothermal heat transfer. Handbook of Heat Transfer Applications (eds. W. M. Rohsenow, J. P. Hartnett and E. N. Ganic), 2nd ed., McGraw-Hill, New York, Chapter 11.

    Google Scholar 

  • Cheng, P. and Teckchandani, L. 1977 Numerical solutions for transient heating and fluid withdrawal in a liquid-dominated geothermal reservoir. The Earths Crust (ed. J. G. Heacock). Amer. Geophys. Union, Washington, DC, pp. 705 - 721.

    Google Scholar 

  • Donaldson, I. G. 1982 Heat and mass circulation in geothermal systems. Ann. Rev. Earth Planet. Sci. 10, 377-395.

    Google Scholar 

  • Doughty, C. and Pruess, K. 1990 A similarity solution for the two-phase fluid and heat flow near high-level nuclear waste packages emplaced in porous media. Int. J. Heat Mass Transfer 33, 1205-1222.

    Google Scholar 

  • Doughty, C. and Pruess, K. 1992 A similarity solution for two-phase water, air and heat flow near a linear heat source in a porous medium. J. Geophys. Res. 97, 1821-1838.

    Google Scholar 

  • Dunn, J. C. and Hardee, H. C. 1981 Superconvecting geothermal zones. J. Volcanol. Geotherm. Res. 11, 189-201.

    Google Scholar 

  • Evans, D. G. and Nunn, J. A. 1989 Free thermohaline convection in sediments surrounding a salt column. J. Geophys. Res. 94, 12413-12422.

    Google Scholar 

  • Galdi, G. P., Payne, L. E., Proctor, M. R. E. and Straughan, B. 1987 Convection in thawing subsea permafrost. Proc. Roy. Soc. London Ser. A 414, 83-102.

    Google Scholar 

  • George, J. H., Gunn, R. D. and Straughan, B. 1989 Patterned ground formation and penetrative convection in porous media. Geophys. Astrophys. Fluid Dyn. 46, 135-158.

    Google Scholar 

  • George, J. H., Gunn, R. D. and Straughan, B. 1989 Patterned ground formation and penetrative convection in porous media. Geophys. Astrophys. Fluid Dyn. 46, 135-158.

    Google Scholar 

  • Gleason, K. J., Krantz, W. B., Caine, N., George, J. H. and Gunn, R. D. 1986 Geometrical aspects of sorted patterned ground in recurrently frozen soil. Science 232, 216 - 220.

    Article  Google Scholar 

  • Gosink, J. P. and Baker, G. C. 1990 Salt fingering in subsea permafrost: Some stability and energy considerations. J. Geophys. Res. 95, 9575-9583.

    Google Scholar 

  • Grant, M. A. 1983 Geothermal reservoir modeling. Geothermics 12, 251 - 263.

    Article  Google Scholar 

  • Hartline, B. K. and Lister, C. R. B. 1981 Topographic forcing of supercritical convection in a porous medium such as the oceanic crust. Earth Planet. Sci. Lett. 55, 75-86.

    Google Scholar 

  • Holzbecher, E. and Yusa, Y. 1995 Numerical experiments on free and forced convection in porous media. Int. J. Heat Mass Transfer 38, 2109-2115.

    Google Scholar 

  • Home, R. N. and OSullivan, M. J. 1974b Oscillatory convection in a porous medium: The effect of through flow. Proc. 5th Australasian Conf. Hydraulics Fluid Mech., University of Canterbury, Christchurch, New Zealand, vol. 2, pp. 234 - 237.

    Google Scholar 

  • Kissling, W., McGuinness, M. J., McNabb, A., Weir, G., White, S. and Young, R. 1992a Analysis of one-dimensional horizontal two-phase flow in geothermal reservoirs. Transport in Porous Media 7, 223 - 253.

    Article  Google Scholar 

  • Kissling, W., McGuinness, M. J., Weir, G., White, S. and Young, R. 1992b Vertical two-phase flow in porous media. Transport in Porous Media 8, 99 - 131.

    Article  Google Scholar 

  • Krantz, W. B., Gleason, K. J. and Caine, N. 1988 Patterned ground. Sci. Amer. 159, 44-50.

    Google Scholar 

  • Lai, C. H., Bodvarsson, G. S. and Truesdell, A. H. 1994 Modeling studies of heat transfer and phase distribution in two-phase geothermal reservoirs, Geothermics 23, 3 - 20.

    Article  Google Scholar 

  • Lopez, D. L. and Smith, L. 1995 Fluid flow at fault zones: Analysis of the interplay of convective circulation and topographically driven groundwater flow. Water Resources Res. 31, 1489-1503.

    Google Scholar 

  • Lowell, R. P. 1980 Topographically driven subcritical hydrothermal convection i n the oceanic crust. Earth Planet. Sci. Lett. 49, 21-28.

    Google Scholar 

  • Lowell, R. P. 1985 Double-diffusive convection in partially molten silicate systems: Its role during magma production and in magma chambers. J. Volcanol. Geotherm. Res. 26, 1-24.

    Google Scholar 

  • Lowell, R. P. 1991 Modeling continental and submarine hydrothermal systems. Rev. Geophys. 29, 457-476.

    Google Scholar 

  • Lowell, R. P. and Burnell, D. K. 1991 Mathematical modeling of conductive heat-transfer from a freezing, convecting magma chamber to a single pass hydrothermal system—Implications for sea-floor black smokers. Earth Planet. Phys. 104, 59-69.

    Google Scholar 

  • Lowell, R. P., Rona, P. A. and von Herzen, R. P. 1995 Seafloor hydrothermal sys?tems. J. Geophys. Res. 100, 327-352.

    Google Scholar 

  • McGuinness, M. J. 1996 Steady solution selection and existence in geothermal heat pipes—I. The convective case. Int. J. Heat Mass Transfer 39, 259-274.

    Google Scholar 

  • McGuinness, M. J., Blakely, M., Pruess, K. and OSullivan, M. J. 1993 Geothermal heat pipe stability: Solution selection by upstreaming and boundary conditions. Transport in Porous Media 11, 71-100.

    Google Scholar 

  • McKay, G. 1992 Patterned ground formation and solar radiation ground heating. Proc. Roy. Soc. London Ser. A 438, 249-263.

    Google Scholar 

  • McKay, G. and Straughan, B. 1991 The influence of a cubic density law on patterned ground formation. Math. Models Methods Appl. Sci. 1, 27-39.

    Google Scholar 

  • McKay, G. and Straughan, B. 1993 Patterned ground formation under water. Contemp. Mech. Thermodyn. 5, 145-162.

    Google Scholar 

  • McKibbin, R. 1998 Mathematical models for heat and mass transport in geothermal systems. Transport Phenomena in Porous Media (eds. D. B. Ingham and I. Pop). Elsevier, Amsterdam, 131 - 154.

    Google Scholar 

  • Weir, G. J. 1991 Geometric properties of two phase flow in geothermal reservoirs. Transport in Porous Media 6, 501 - 517.

    Article  Google Scholar 

  • Weir, G. J. 1994a The relative importance of convective and conductive effects i n two-phase geothermal fields. Transport in Porous Media 16, 289 - 295.

    Article  Google Scholar 

  • Weir, G. J. 1994b Nonreacting chemical transport in two-phase reservoirs—Factoring diffusive and wave properties. Transport in Porous Media 17, 201 - 220.

    Article  Google Scholar 

  • Young, R. 1993a Two-phase brine mixtures in the geothermal context and the polymer flood model. Transport in Porous Media 11, 179 - 185.

    Article  Google Scholar 

  • Young, R. M. 1996a Phase transitions in one-dimensional steady state hydrothermal flows. J. Geophys. Res. 101, 18011-18022.

    Google Scholar 

  • Young, R. 1993b Two-phase geothermal flows with conduction and the connection with Buckley—Leverett theory. Transport in Porous Media 12, 261 - 278.

    Article  Google Scholar 

  • Young, R. M. 1996b A basic model for vapour-dominated geothermal reservoirs. Proceedings of the 18th NZ Geothermal Workshop, University of Auckland, Auckland, NZ, pp. 301 - 304.

    Google Scholar 

  • Young, R. M. 1998 Classification of one-dimensional steady-state two-phase geothermal flows including permeability variations: Part 1, Theory and special cases; Part 2, The general case. Int. J. Heat Mass Transfer, to appear.

    Google Scholar 

  • Young, R. and Weir, G. 1994 Constant rate production of geothermal fluid from a two-phase vertical column. I: Theory. Transport in Porous Media. 14, 265-286.

    Google Scholar 

  • Sturm, M. and Johnson, J. B. 1991 Natural convection in the subarctic snow cover. J. Geophys. Res. 96, 11657-11671.

    Google Scholar 

  • Stubos, A. K., Satik, C. and Yortsos, Y. C. 1993b Effects of capillary heterogeneity on vapor-liquid counterflow in porous media. Int. J. Heat Mass Transfer 36, 967-976.

    Google Scholar 

  • Stubos, A. K., Satik, C. and Yortsos, Y. C. 1993a Critical heat flux hysteresis in vapor-liquid counterflow in porous media. Int. J. Heat Mass Transfer 36, 227-231.

    Google Scholar 

  • Stubos, A. K., Kanellopoulos, V. and Tassopoulos, M. 1994 Aspects of transient modelling of a volumetrically heated porous bed: A combination of microscopic and macroscopic approach. Heat Transfer, 1994. Inst. Chem. Engrs, Rugby, vol. 5, pp. 387 - 392.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media New York

About this chapter

Cite this chapter

Nield, D.A., Bejan, A. (1999). Geophysical Aspects. In: Convection in Porous Media. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-3033-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-3033-3_11

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-3035-7

  • Online ISBN: 978-1-4757-3033-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics