Skip to main content

On Preconditioning

  • Chapter
  • 238 Accesses

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 13))

Abstract

As mentioned in §1.2, it is usually necessary to precondition an interval linear system to obtain meaningful bounds on the solution set. This is clear for the interval Gauss-Seidel method, since it reduces to the classical Gauss-Seidel method when the coefficients of the system of equations are thin, and since the classical Gauss-Seidel method in general does not converge without preconditioning. However, preconditioning is also necessary and useful for the Krawczyk method and interval Gaussian elimination. For example, if interval Gaussian elimination, i.e. Algorithm 1 is applied to the system \(AX = B\) of (1.19) on page 20, the result is

$$ \left( {\frac{{\left[ {2,4} \right]\left| {\left[ { - 2,1} \right]} \right|\left[ { - 2,2} \right]}}{{\left[ { - 1,2} \right]\left| {\left[ {2,4} \right]} \right|\left[ { - 2,2} \right]}}} \right)\left( {\frac{{\left[ {2,4} \right]\left| {\left[ { - 2,1} \right]} \right|\left[ { - 2,2} \right]}}{{0\left| {\left[ {2,4} \right] - \frac{{\left[ { - 2,1} \right]}}{{\left[ {2,4} \right]}}\left[ {2,4} \right]} \right|\left[ { - 2,2} \right] - \frac{{\left[ { - 2,2} \right]}}{{\left[ {2,4} \right]}}\left[ { - 2,2} \right]}}} \right) = \left( {\frac{{\left[ {2,4} \right]\left| {\left[ { - 2,1} \right]} \right|\left[ { - 2,2} \right]}}{{\left[ { - 1,2} \right]\left| {\left[ { - 4,4} \right]} \right|\left[ { - 6,6} \right]}}} \right) $$

which gives only \({x_2} \in \frac{{\left[ { - 6,6} \right]}}{{\left[ { - 4,4} \right]}} = {\kern 1pt} and{\kern 1pt} {x_1} \in \), whereas, as is seen in Gigure 1.1, the smallest possible interval enclosure of the solution set is \( \sum {(A,B) = {{\left( {\left[ { - 4,4} \right],\left[ { - 4,4} \right]} \right)}^T}} \). Similarly, applying the interval Gauss-Seidel method results in \( \overline {{x_1}} \leftarrow \frac{{\left[ { - 2,2} \right] - \left[ { - 2,1} \right]\left[ { - 10,10} \right]}}{{\left[ {2,4} \right]}} = \left[ { - 11,11} \right] \supset \left[ { - 10,10} \right]{\kern 1pt} and{\kern 1pt} \overline {{x_2}} \leftarrow \frac{{\left[ { - 2,2} \right] - \left[ { - 1,2} \right]\left[ { - 10,10} \right]}}{{\left[ {2,4} \right]}} = \left[ { - 11,11} \right] \supset \left[ { - 10,10} \right]\). Finally, the Krawczyk method only makes sense in the context of presconditioners.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kearfott, R.B. (1996). On Preconditioning. In: Rigorous Global Search: Continuous Problems. Nonconvex Optimization and Its Applications, vol 13. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2495-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2495-0_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4762-8

  • Online ISBN: 978-1-4757-2495-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics