Skip to main content

Structural Studies on Prokaryotic Cytochromes P450

  • Chapter
Cytochrome P450

Abstract

The camphor monooxygenase from Pseudomonas putida, P450cam, has been the single best paradigm for P450 structure and function studies for over two decades.1 Following a wealth of biochemical and biophysical studies on P450cam, the high-resolution crystal structure became available in 1987.2 This was followed by a series of structures on various inhibitor/substrate complexes which revealed some key structure-function relationships in P450s. In addition, with the development of recombinant expression systems for P450cam, it has been possible to use site-directed mutagenesis3,4 with reference to the crystal structure to probe questions of how structure relates to function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Raag, R., and Poulos, T. L., 1992, X-ray crystallographic studies of p450cam: Factors controlling substrate metabolism, in: Frontiers in Biotransformations, Vol. 7 (K. Ruckpaul and H. Rein, eds.), Akademie Verlag, Weinheim, pp. 1–43. This review contains references to many of the pioneering works on P450cam, especially from the laboratories of I. C. Gunsalus and S. Sligar.

    Google Scholar 

  2. Poulos, T. L., Finzel, B.C., and Howard, A. J., 1987, High-resolution crystal structure of cytochrome P450cam, J. Mol. Biol. 195: 697–700.

    Article  Google Scholar 

  3. Martinis, S. A., Atkins, W. A., Stayton, P.S., and Sligar, S. G., 1989, Aconservedresidue of cytochrome P450 is involved in heme-oxygen stability and activation, J. Am. Chem. Soc. 111: 9252–9253.

    Article  CAS  Google Scholar 

  4. Imai, M., Shimada, H., Watanabe, Y., Matsushima-Hibiya, Y, Makino, R., Koga, H., Horiuchi, T., and Ishimura, Y., 1989, Uncoupling of the cytochrome P450cam monoxygenase reaction by a single mutation, threonine-252 to alanine or valine: A possible role of the hydroxy amino acid in oxygen activation, Proc. Natl. Acad. Sci. USA 86: 7823–7827.

    Article  PubMed  CAS  Google Scholar 

  5. Ravichandran, K. G., Boddupalli, S. S., Haserman, C. A., Peterson, J. A., and Deisenhofer, J., 1993, Crystal structure of hemoprotein domain of P450BM-3, a prototype for microsomal P450s, Science 261: 731–736.

    Article  PubMed  CAS  Google Scholar 

  6. Li, H., and Poulos, T. L., 1994, Modeling protein—substrate interactions in the heme domain of cytochrome P450BM-3, Acta Crystallogr. D51: 21–32.

    Google Scholar 

  7. Hasemann, C. A., Ravichandran, K. G., Peterson, J. A., and Deisenhofer, J., 1994, Crystal structure and refinement of P450terp at 2.3 A resolution, J. Mol. Biol. 236: 1169–1185.

    Article  PubMed  CAS  Google Scholar 

  8. Cupp-Vickery, J., Li, H., and Poulos, T. L., 1994, Preliminary crystallographic analysis of an enzyme involved in erythromycin biosynthesis: Cytochrome P450eryF, Proteins 20: 187–201.

    Article  Google Scholar 

  9. Cupp-Vickery, J., and Poulos, T. L., 1995, Structure of cytochrome P450 eryF: an enzyme involved in erythromycin biosynthesis, Nat. Struct. Biol. 2: 144–153.

    Article  PubMed  CAS  Google Scholar 

  10. Shaiffe, A., and Hutchinson, C. R., 1987, Macrolide antibiotic biosynthesis: Isolation and characterization of two forms of 6-deoxyerythronolide B hydroxylase from Saccharopolyspora erythaea, Biochemistry 26: 6204–6210.

    Article  Google Scholar 

  11. Andersen, J. K., and Hutchinson, C. R., 1993, Substrate specificity of 6-deoxyerythronolide B hydroxylase, a bacterial cytochrome P450 of erythromycin biosynthesis, Biochemistry 32: 1905–1913.

    Article  PubMed  CAS  Google Scholar 

  12. Shaiffe, A., and Hutchinson, C. R., 1988, Purification and reconstitution of the electron transport components of 6-deoxyerythronolide B hydroxylase, a cytochrome P450 enzyme of macrolide antibiotic (erythromycin) biosynthesis, J. Bacteriol. 170: 1548–1553.

    Google Scholar 

  13. Poulos, T. L., Edwards, S. L., Wariishi, H., and Gold, M. H., 1993, Crystallographic refinement of lignin peroxidase at 2A, J. Biol. Chem. 268: 4429–4440.

    PubMed  CAS  Google Scholar 

  14. Kunishima, N., Fukuyama, K., Matsubara, H., Hatanaka, H., Shibano, Y., and Amachi, T., 1994, Crystal structure of the fungal peroxidase from A rthromyces ramosus at 1.9A resolution, J. Mol. Biol. 235: 331–344.

    Article  PubMed  CAS  Google Scholar 

  15. Valli, K., Wariishi, H., and Gold, M. H., 1990, Oxidation of monoethoxylated aromatic compounds by lignin peroxidase: Role of veratryl alcohol in lignin biodegradation, Biochemistry 29: 8535–8539.

    Article  PubMed  CAS  Google Scholar 

  16. Ortiz de Montellano, P. R., 1992, Catalytic sites of hemoprotein peroxidases, Annu. Rev. Pharmacol. Toxicol. 32: 89–107.

    Article  Google Scholar 

  17. Kraut, J., 1977, Serine proteases: Structure and mechanism of catalysis, Annu. Rev. Biochem. 46: 331–358.

    Article  PubMed  CAS  Google Scholar 

  18. Sligar, S. G., and Gunsalus, I. C., 1976, A thermodynamic model of regulation: Modulation of redox equilibria in camphor monoxygenase, Proc. Natl. Acad. Sci. USA 73: 1078–1082.

    Article  PubMed  CAS  Google Scholar 

  19. Li, H., Darwish, K., and Poulos, T. L., 1991, Characterization of recombinant Bacillus megaterium cytochrome P450BM.3 and its two functional domains, J. Biol. Chem. 266: 11909–11914.

    PubMed  CAS  Google Scholar 

  20. Poulos, T. L., Finzel, B. C., and Howard, A. J., 1986, Crystal structure of substrate-free P putida cytochrome P450, Biochemistry 25: 5314–5322.

    Article  PubMed  CAS  Google Scholar 

  21. Erman, J. E., Vitello, L. B., Miller, M. A., Shaw, A., Brown, K. A., and Kraut, J., 1993, Histidine 52 is a critical residue for rapid formation of cytochrome c peroxidase compound I, Biochemistry 32: 9798–9806.

    Article  PubMed  CAS  Google Scholar 

  22. Choudhury, K., Sundaramoorthy, M., Mauro, J. M., and Poulos, T. L., 1992, Conversion of the proximal histidine ligand to glutamine restores activity to an inactive mutant of cytochrome c peroxidase, J. Biol. Chem. 267: 25656–25659.

    PubMed  CAS  Google Scholar 

  23. Choudhury, K., Sundaramoorthy, M., Hickman, A., Yonetani, T., Woehl, E., Dunn, M. E, and Poulos, T. L., 1994, The role of the proximal ligand in peroxidase catalysis: Crystallographic, kinetic, and spectral studies of cytochrome c peroxidase proximal ligand mutants, J. Biol. Chem. 269: 20239–20249.

    PubMed  CAS  Google Scholar 

  24. Dawson, J. H., 1988, Probing structure—function relations in heme-containing oxygenases and peroxidases, Science 240: 433–439.

    Article  PubMed  CAS  Google Scholar 

  25. Poulos, T. L., and Howard, A. J., 1987, Crystal structures of the metyrapone and phenylimidazole inhibited complexes of cytochrome P450cam, Biochemistry 26: 8165–8174.

    Article  PubMed  CAS  Google Scholar 

  26. Raag, R., Martinis, S. A., Sligar, S. G., and Poulos, T. L., 1991, Crystal structure of the cytochrome P450cam active site mutant Thr252Ala, Biochemistry 30: 11420–11429.

    Article  PubMed  CAS  Google Scholar 

  27. Wade, R. C., 1990, Solvation at the active site of cytochrome P450cam, J. Comput. Aided Mol. Des. 4: 199–204.

    Article  PubMed  CAS  Google Scholar 

  28. Gerber, N. C., and Sligar, S. G., 1992, Catalytic mechanism of cytochrome P450: Evidence for a distal charge relay, J. Am. Chem. Soc. 114: 8742–8743.

    Article  CAS  Google Scholar 

  29. Kievan, L., Peone, J., and Madan, S. K., 1973, Molecular oxygen adducts of transition metal complexes, J. Chem. Educ. 50: 670–675.

    Article  Google Scholar 

  30. Raag, R., and Poulos, T. L., 1989, Crystal structure of the carbon monoxide—substrate—cytochrome P450cam ternary complex, Biochemistry 28: 7586–7592.

    Article  PubMed  CAS  Google Scholar 

  31. Raag, R., and Poulos, T. L., 1989, The structural basis for substrate-induced changes in redox potential and spin equilibrium in cytochrome P450cam, Biochemistry 28: 917–922.

    Article  PubMed  CAS  Google Scholar 

  32. Raag, R., and Poulos, T. L., 1991, Crystal structures of cytochrome P450cam complexed with camphane, thiocamphor, and adamantane: Factors controlling P450 substrate hydroxylation, Biochemistry 30: 2674–2684.

    Article  PubMed  CAS  Google Scholar 

  33. Raag, R., Li, H., Jones, B. C., and Poulos, T. L., 1993, Inhibitor-induced conformational change in cytochrome P450cam, Biochemistry 32: 4571–4578.

    Article  PubMed  CAS  Google Scholar 

  34. Stayton, P. S., Poulos, T. L., and Sligar, S., 1989, Putidaredoxin competitively inhibits cytochrome b5—cytochrome P450cam association: A proposed model for a cytochrome 450cam electron-transfer complex, Biochemistry 28: 8201–8205.

    Article  PubMed  CAS  Google Scholar 

  35. Stayton, P. S., and Sligar, S. G., 1990, The cytochrome P450cam binding surface as defined by site-directed mutagenesis and electrostatic modeling, Biochemistry 29: 7381–7386.

    Article  PubMed  CAS  Google Scholar 

  36. Nelson, D. R., and Strobel, H. W., 1988, On the membrane topography of cytochrome P450 proteins, J. Biol. Chem. 263: 6038–6050.

    PubMed  CAS  Google Scholar 

  37. Peterson, J. A., 1971, Camphor binding by Pseudomonas putida cytochrome P450, Arch. Biochem. Biophys. 144: 678–693.

    Article  CAS  Google Scholar 

  38. Hoa, H. B., and Marden, M. C., 1982, The pressure dependence of the spin equilibrium in camphor-bound ferric cytochrome P450, Eur. J. Biochem. 124: 311–315.

    Article  Google Scholar 

  39. Di Promo, C., Hoa, H. B., Douzou, P., and Sligar, S., 1990, Mutagenesis of a single hydrogen bond in cytochrome P450 alters cation binding and heure solvation, J. Biol. Chem. 265: 5361–5363.

    Google Scholar 

  40. Fisher, M. T., and Sligar, S. G., 1983, Control of heme redox potential and reduction rate: A linear free energy relation between potential and ferric spin state equilibrium, J. Am. Chem. Soc. 107: 5018–5019.

    Article  Google Scholar 

  41. Loew, G. H., Collins, J., Luke, B., Waleh, A., and Pudzanowski, K. A., 1986, Theoretical studies on cytochrome P450. Characterization of stable and transient active states, reaction mechanisms and substrate-enzyme interactions, Enzyme 36: 54–78.

    PubMed  CAS  Google Scholar 

  42. White, R. E., McCarthy, M.-B., Egeberg, K. D., and Sligar, S. G., 1984, Regioselectivity in the cytochromes P450: Control by protein constraints and by chemical reactivities, Arch. Biochem. Biophys. 228: 493–502.

    Article  PubMed  CAS  Google Scholar 

  43. Atkins, W. M., and Sligar, S. G., 1988, The roles of active site hydrogen bonding in cytochrome P450cam as revealed by site-directed mutagenesis, J. Biol. Chem. 263: 18842–18849.

    PubMed  CAS  Google Scholar 

  44. Atkins, W. M., and Sligar, S. G., 1989, Molecular recognition in cytochrome P450: Alteration of regioselective alkane hydroxylation via protein engineering, J. Am. Chem. Soc. 111: 2715–2717.

    Article  CAS  Google Scholar 

  45. Kraulis, P., 1991, MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures, J. Appl. Crystallagr. 24: 946–950.

    Article  Google Scholar 

  46. Evans, S., 1993, SETOR: Hardware lighted three-dimensional solid model representation of macromolecules, J. Mol. Graphics 11: 134–138.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Poulos, T.L., Cupp-Vickery, J., Li, H. (1995). Structural Studies on Prokaryotic Cytochromes P450. In: de Montellano, P.R.O. (eds) Cytochrome P450. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-2391-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-2391-5_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-3248-8

  • Online ISBN: 978-1-4757-2391-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics