Skip to main content

Numerical Solution of a Class of Integral Equations Arising in Two-Dimensional Aerodynamics—The Problem of Flaps

  • Chapter

Part of the book series: Mathematical Concepts and Methods in Science and Engineering ((MCSENG,volume 18))

Abstract

Bland’s collocation method is extended to calculate aerodynamic forces on airfoils with flaps. This requires the solution of Cauchy singular integral equations with discontinuous right-hand sides. Straightforward application of collocation is shown to yield slow convergence, of order 1/N. Examination of a variety of methods that have been proposed to accelerate convergence leads us to select a simple form of extrapolation as an effective means of achieving engineering accuracy. Numerical results are presented supporting these assertions.

This work was supported by NASA Grant NSG-2140.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bland, S. R., The Two-Dimensional Oscillating Airfoil in a Wind Tunnel in Subsonic Compressible Flow, Society for Industrial and Applied Mathematics Journal on Applied Mathematics, Vol. 18, pp. 830–848, 1970.

    Article  Google Scholar 

  2. Fromme, J. A., and Golberg, M. A., Unsteady Two-Dimensional Airloads Acting on Oscillating Thin Airfoils in Subsonic Ventilated Wind Tunnels, National Aeronautics and Space Administration, Contractor Report No. 2967, 1978.

    Google Scholar 

  3. Edwards, J. W., Breakwell, J. V., and Bryson, A. E., Active Flutter Control Using Generalized Unsteady Aerodynamic Theory, Journal of Guidance and Control, Vol. 1, pp. 32–40, 1978.

    Article  Google Scholar 

  4. Fromme, J. A., and Golberg, M. A., Numerical Solution of a Class of Integral Equations Arising in Two-Dimensional Aerodynamics,this volume, Chapter 4.

    Google Scholar 

  5. Fromme, J. A., and Golberg, M. A., On the L2 Convergence of Collocation for the Generalized Airfoil Equation (to appear).

    Google Scholar 

  6. Nissim, E., and Lottati, I., Oscillatory Subsonic Piecewise Continuous Kernel Function Method, Journal of Aircraft, Vol. 14, pp. 515–516, 1977.

    Article  Google Scholar 

  7. Jager, E. M., Tables of the Aerodynamic Aileron Coefficients for an Oscillating Wind-Aileron System in Subsonic Compressible Flow, National Luchtvaartlaboratorium, Report F-155, 1954.

    Google Scholar 

  8. Rowe, W., Sebastian, J., and Redman, M., Some Recent Developments in Predicting Unsteady Loadings Caused by Control Surface Motions, American Institute of Aeronautics and Astronautics, Paper No. 75–101, 1975.

    Google Scholar 

  9. Rowe, W., Redman, M., Ehlers, F., and Sebastian, J., Prediction of Unsteady Loadings Caused by Leading and Trailing Edge Control Surface Motions in Subsonic Compressible Flow—Analysis and Results, National Aeronautics and Space Administration, Contractor Report No. 2543, 1975.

    Google Scholar 

  10. Fromme, J. A., Golberg, M. A., and Werth, J., Computation of Aerodynamic Effects on Oscillating Airfoils with Flaps in Ventilated Subsonic Wind Tunnels (to appear).

    Google Scholar 

  11. Sloan, I., Burn, B., and Datyner, N., A New Approach to the Numerical Solution of Integral Equations, Journal of Computational Physics, Vol. 18, pp. 92–105, 1975.

    Article  Google Scholar 

  12. Flax, A., Reverse Flow and Variational Theorems for Lifting Surfaces in Non-Stationary Compressible Flow, Journal of the Aeronautical Sciences, Vol. 20, pp. 120–126, 1953.

    Google Scholar 

  13. Milne, R., Application of Integral Equations for Fluid Flows in Unbounded Domains, Finite Elements in Fluids, Vol. 2, Edited by R. H. Gallagher, J. T. Oden, and O. C. Zienkiewicz, John Wiley and Sons, New York, New York, 1975.

    Google Scholar 

  14. Williams, M., The Resolvent of Singular Integral Equations, Quarterly Journal of Applied Mathematics, Vol. 28, pp. 99–110, 1977.

    Google Scholar 

  15. Williams, M., Exact Solutions in Thin Oscillating Airfoil Theory, American Institute of Aeronautics and Astronautics Journal, Vol. 15, pp. 875–876, 1977.

    Article  Google Scholar 

  16. Williams, M., The Solution of Singular Integral Equations by Jacobi Polynomials (to appear).

    Google Scholar 

  17. Baker, C. T. H., The Numerical Treatment of Integral Equations, Cambridge University Press, London, England, 1977.

    Google Scholar 

  18. Fromme, J. A., Extension of the Subsonic Kernel Function Analysis to Incorporate Partial Span Trailing Edge Control Surfaces, North American Aviation, Technical Report NA 64H - 209, 1964.

    Google Scholar 

  19. Atkinson, K., A Survey of Numerical Methods for the Solution of Fredholm Integral Equations of the Second Kind, Society for Industrial and Applied Mathematics, Philadelphia, Pennsylvania, 1976.

    Google Scholar 

  20. Fromme, J. A., and Golberg, M. A., Projection Methods for the Generalized Airfoil Equation, Society for Industrial and Applied Mathematics Fall Meeting, Albuquerque, New Mexico, 1977.

    Google Scholar 

  21. Söhngen, H., Zur Theorie der Endlichen Hilbert-Transformation, Mathematische Zeitschrift, Vol. 60, pp. 31–51, 1954.

    Article  Google Scholar 

  22. Bland, S. R., The Two Dimensional Oscillating Airfoil in a Wind Tunnel in Subsonic Compressible Flow, North Carolina State University, PhD Thesis, 1968.

    Google Scholar 

  23. Von Karman, T., Supersonic Aerodynamics—Principles and Applications, Journal of the Aeronautical Sciences, Vol. 14, pp. 373–409, 1947.

    Google Scholar 

  24. Keller, H. B., Accurate Difference Methods for Nonlinear Two Point Boundary Value Problems, Society for Industrial and Applied Mathematics Journal on Numerical Analysis, Vol. 11, pp. 305–320, 1974.

    Article  Google Scholar 

  25. Strang, W. G., and Fix, G., An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs, New Jersey, 1973.

    Google Scholar 

  26. Munk, M., General Theory of Thin Wing Sections, National Advisory Committee for Aeronautics, Report 142, 1922.

    Google Scholar 

  27. Birnbaum, W., Die Tragende Wirbei Fläche als Hiffsmittle zur Behandlung des Ebenen Problems der Tragflügeltheorie, Zeitschrift fur Angewandte Mathematik und Mechanik, Vol. 4, pp. 227–292, 1924.

    Google Scholar 

  28. Munk, M., Elements of the Wing Sections Theory and of the Wing Theory, National Advisory Committee for Aeronautics, Report 191, 1924.

    Google Scholar 

  29. Küssner, H. G., Schwingungen von Flugzeugflügeln, Luftfahrtforschung, Vol. 4, pp. 41–62, 1929.

    Google Scholar 

  30. Theodorsen, T.,General Theory of Aerodynamic Instability and the Mechanism of Flutter, National Advisory Committee for Aeronautics, Report 496, 1935.

    Google Scholar 

  31. Küssner, H. G., Zusammenfossender Bericht über den Instationdren Auftreib von Flügeln, Luftfahrtforschung, Vol. 13, pp. 410–424, 1936.

    Google Scholar 

  32. Multhopp, H., Die Berechung der Auftriebsverteilung von Tragflügeln, Luftfahrtforschung, Vol. 15, pp. 153–169, 1938.

    Google Scholar 

  33. Possio, C., L’Azlone Aerodinamica sol Profilo Oscillante in un Fluido Compressible a Velocita Iposonora, L’Aerotecnica, Vol. 18, pp. 421–458, 1938.

    Google Scholar 

  34. Von Karman, T., and Sears, W. R., Airfoil Theory for Nonuniform Motion, Journal of Aeronautical Sciences, Vol. 5, pp. 370–378, 1938.

    Google Scholar 

  35. Küssner, H. G., General Airfoil Theory, National Advisory Committee for Aeronautics, TM 979, 1940.

    Google Scholar 

  36. Küssner, H. G., Allgemeine Tragflachentheorie, Luftfahrtforschung, Vol. 17, pp. 370–378, 1940.

    Google Scholar 

  37. Schwarz, L., Berechung der Druchnerteilung einer Harmonisch sich Verformenden Tragflache in Eliener Stromung, Luftfahrtforschung, Vol. 17, pp. 379–386, 1940.

    Google Scholar 

  38. Söhngen, H., Bestimmung der Auftriebsverteilung fur Beliebige Instationäre Begungen (Ebenes Problem), Luftfahrtforschung, Vol. 17, pp. 401–420, 1940.

    Google Scholar 

  39. Küssner, H. G., and Schwarz, L., The Oscillating Wing with Aerodynamically Balanced Elevator, National Advisory Committee on Aeronautics, TM 991, 1941.

    Google Scholar 

  40. Schade, T., Numerical Solution of Possio’s Integral Equation for Oscillating Airfoils in Plane Subsonic Flow, British Aeronautical Research Council, Research Memorandum 9506, 1944.

    Google Scholar 

  41. Biot, M. A., The Oscillating Deformable Airfoil of Infinite Span in Compressible Flow, Proceedings of the Sixth International Congress of Applied Mechanics, Paris, France, 1946.

    Google Scholar 

  42. Dietze, F., The Air Forces of the Harmonically Vibrating Wing in a Compressible Medium at Subsonic Velocity, Part II, Numerical Tables and Curves, American Air Force, Report No. F-TS-948-RE, 1947.

    Google Scholar 

  43. Haskind, M. D., Oscillations of a Wing in Subsonic Flow, Brown University, Report No. A9-T-22, 1947.

    Google Scholar 

  44. Karp, S. N., Shu, S. S., and Weil, H., Aerodynamics of the Oscillating Airfoil in Compressible Flow, Brown University, Technical Report No. F-TR-1167ND, 1947.

    Google Scholar 

  45. Karp, S. N., and Weil, H., The Oscillating Airfoil in Compressible Flow, Part II, A Review of Graphical and Numerical Data, Brown University, 1948.

    Google Scholar 

  46. Multhopp, H., Methods for Calculating the Lift Distribution of Wings, Great Britain Aeronautical Research Council, Reports and Memoranda No. 2884, 1950.

    Google Scholar 

  47. Oswatitsch, K., Die Geschwindigkeitsverteilung Bei Lokalen Überschallgabienten an Flachen Profilen, Acta Physica Austriaca, Vol. 4, pp. 228–271, 1950.

    Google Scholar 

  48. Reissner, E., On the Application of Mathieu Functions in the Theory of Subsonic Compressible Flow Past Oscillating Airfoils, National Advisory Committee on Aeronautics, TN 2363, 1951.

    Google Scholar 

  49. Fettis, H. E., An Approximate Method for the Calculation of Nonstationary Air Forces at Subsonic Speeds, United States Air Force, WADCTR 52–56, 1952.

    Google Scholar 

  50. Küssner, H. G., A Review of the Two-Dimensional Problem of Unsteady Lifting Surface Theory During the Last Thirty Years, Max Planck Institut für Strommungforschung, Göttingen, Germany, 1953.

    Google Scholar 

  51. Runyan, H. L., and Watkins, C. E., Considerations of the Effect of Tunnel Walls on the Forces on an Oscillating Airfoil in Two Dimensional Subsonic Compressible Flow, National Advisory Committee on Aeronautics, Report 1150, 1953.

    Google Scholar 

  52. Baldwin, B. Turner, J., and Knechtel, E., Wall Interference in Wind Tunnels with Slotted and Porous Boundaries at Subsonic Speeds, National Advisory Committee on Aeronautics, TN 3176, 1954.

    Google Scholar 

  53. Spreiter, J. R., and Alksne, R., Theoretical Prediction of Pressure Distributions on Non-lifting Airfoils at High Subsonic Speeds, National Advisory Committee on Aeronautics, TN 2096, 1954.

    Google Scholar 

  54. Bisplinghoff, R. L., Ashley, H., and Halfman, R. A., Aeroelasticity, Addison-Wesley Publishing Company, Cambridge, Massachusetts, 1955.

    Google Scholar 

  55. Watkins, C. E., Runyan, H. L., and Woolston, D. S., On the Kernel Function of the Integral Equation Relating the Lift and Downwash Distributions of Oscillating Finite Wings at Subsonic Speeds, National Advisory Committee on Aeronautics, Report No. 1234, 1955.

    Google Scholar 

  56. Williams, D. E., On the Integral Equations on Two-Dimensional Flutter Derivative Theory, British Aeronautical Research Council, Reports and Memoranda No. 3057, 1955.

    Google Scholar 

  57. Runyan, A. L., Woolston, D. S., and Rainey, A. G., Theoretical and Experimental Investigation of the Effects of Tunnel Walls on the Forces on an Oscillating Airfoil in Two-Dimensional Subsonic Compressible Flow, National Advisory Committee on Aeronautics, Report 1262, 1956.

    Google Scholar 

  58. Drake, D., The Oscillating Two-Dimensional Airfoil Between Porous Walls, The Aeronautical Quarterly, Vol. 8, pp. 226–239, 1957.

    Google Scholar 

  59. Woods, L., On the Theory of Two-Dimensional Wind Tunnels with Porous Walls, Proceedings of the Royal Society, Series A, Vol. 242, pp. 341–354, 1957.

    Article  Google Scholar 

  60. Drake, D., Quasi-steady Derivatives for the Subsonic Flow Past an Oscillating Airfoil in a Porous Wind Tunnel, The Aeronautical Quarterly, Vol. 10, pp. 211–229, 1959.

    Google Scholar 

  61. Williams, D. E., Some Mathematical Methods in Three-Dimensional Subsonic Flutter-Derivative Theory, British Aeronautical Research Council, Reports and Memoranda No. 3302, 1961.

    Google Scholar 

  62. Fromme, J. A., Least Squares Approach to Unsteady Kernel Function Theory, Journal of the American Institute of Aeronautics and Astronautics, Vol. 7, pp. 1349–1350, 1964.

    Google Scholar 

  63. Garner, H., Rogers, E. W. E., Acum, W. E. A., and Maskell, E. C., Subsonic Wind Tunnel Wall Corrections, NATO Advisory Group for Aerospace Research and Development, AGARDograph 109, 1966.

    Google Scholar 

  64. Bland, S. R., Rhyne, R. H., and Pierce, H. B., Study of Flow Induced Vibrations of a Plate in Narrow Channels, Transactions of the American Society of Mechanical Engineers, Series B, Vol. 89, pp. 824–830, 1967.

    Google Scholar 

  65. Hess, J. L., and Smith, A. M. O., Calculation of Potential Flow About Arbitrary Bodies, Progress in Aeronautical Sciences, Vol. 8, Edited by D. Kuchemann, Pergamon Press, New York, New York, 1967.

    Google Scholar 

  66. Landahl, M. T., and Stark, V. J., Numerical Lifting Surface Theory—Problems and Progress,Journal of the American Institute of Aeronautics and Astronautics, Vol. 6, pp. 2049–2060, 1968. (See this paper for an additional bibliography on three-dimensional problems.)

    Google Scholar 

  67. White, R., and Landahl, M., Effects of Gaps on the Loading Distributions of Planar Lifting Surfaces, Journal of the American Institute of Aeronautics and Astronautics, Vol. 6, pp. 626–631, 1968.

    Article  Google Scholar 

  68. Fung, Y. C., An Introduction to the Theory of Aeroelasticity, Dover Publications, New York, New York, 1969.

    Google Scholar 

  69. Niaz, S. A., The Application of Projection Methods to Linearized Unsteady Lifting Surface Theory, London University, PhD Thesis, 1970.

    Google Scholar 

  70. Norstrud, H., Numerische Lösungen von Schallnahen Strömungen um Ebene Profile, Zeitschrift fur Flugwissenschaften, Vol. 18, pp. 149–157, 1970.

    Google Scholar 

  71. Grahm, J. M. R., A Lifting Surface Theory for the Rectangular Wing in Non-Stationary Flow, Aeronautical Quarterly, Vol. 22, pp. 83–100, 1971.

    Google Scholar 

  72. Ebihara, M., A Study of Subsonic Two Dimensional Wall Interference Effects in a Perforated Wind Tunnel, National Aerospace Laboratory, Report No. TR-252T, 1972.

    Google Scholar 

  73. Dowell, E. H., and Ventres, C. S., Derivation of Aerodynamic Kernel Functions, Journal of the American Institute of Aeronautics and Astronautics, Vol. 11, pp. 1586–1588, 1973.

    Article  Google Scholar 

  74. Norstrud, H., Transonic Flow Past Lifting Wings, Journal of the American Institute of Aeronautics and Astronautics, Vol. 11, pp. 754–757, 1973.

    Article  Google Scholar 

  75. Norstrud, H., The Transonic Airfoil Problem with Embedded Shocks, The Aeronautical Quarterly, Vol. 24, pp. 129–138, 1973.

    Google Scholar 

  76. Osborne, C., Unsteady Thin Airfoil Theory for Subsonic Flow, Journal of the American Institute of Aeronautics and Astronautics, Vol. 11, pp. 205–209, 1973.

    Article  Google Scholar 

  77. Frohn, A., Problems and Results of the Integral Equation Methods for Transonic Flows, Symposium Transonicum II, Edited by K. Oswatitsch and D. Rues, Springer-Verlag, Berlin, Germany, 1974.

    Google Scholar 

  78. Nixon, D., and Hancock, G. J., High Subsonic Flow Past a Steady Two Dimensional Airfoil, Aeronautical Research Council, Paper No. 1280, 1974.

    Google Scholar 

  79. Yates, J. E., Linearized Integral Theory of Three Dimensional Unsteady Flow in a Shear Layer, Journal of the American Institute of Aeronautics and Astronautics, Vol. 12, pp. 596–602, 1974.

    Article  Google Scholar 

  80. Kraft, E., An Integral Equation Method for Boundary Interference in Perforated Wind Tunnels at Transonic Speeds, University of Tennessee, PhD Thesis, 1975.

    Google Scholar 

  81. Mokry, M., Integral Equation Method for Subsonic Flow Past Airfoils in Ventilated Wind Tunnels, Journal of the American Institute of Aeronautics and Astronautics, Vol. 15, pp. 47–53, 1975.

    Article  Google Scholar 

  82. Nixon, D., A Comparison of Two Integral Equation Methods for High Subsonic Flows, The Aeronautical Quarterly, Vol. 26, pp. 56–58, 1975.

    Google Scholar 

  83. Sears, W. R., and Telionis, D. P., Boundary-Layer Separation in Unsteady Flow, Society for Industrial and Applied Mathematics Journal on Applied Mathematics, Vol. 28, pp. 215–235, 1975.

    Article  Google Scholar 

  84. Nixon, D., Calculation of Transonic Flows Using Integral Equation Methods, London University, PhD Thesis, 1976.

    Google Scholar 

  85. Norstrud, H., Comment on an Extended Integral Equation Method for Transonic Flows, Journal of the American Institute of Aeronautics and Astronautics, Vol. 14, pp. 820–826, 1976.

    Article  Google Scholar 

  86. Rowe, W., Sebastian, J., and Redman, M., Some Recent Developments in Predicting Unsteady Airloads Caused by Control Surface Motions, Journal of Aircraft, Vol. 13, pp. 955–961, 1976.

    Article  Google Scholar 

  87. Chakraborty, S. K., and Niyogi, P., Integral Equation Formulation for Transonic Lifting Profiles, Journal of the American Institute for Aeronautics and Astronautics, Vol. 15, pp. 1816–1817, 1977.

    Article  Google Scholar 

  88. Jaswon, M. A., and Symm, G. T., Integral Equation Methods in Potential Theory and Elastostatics, Academic Press, London, England, 1977.

    Google Scholar 

  89. Kraft, E., and Lo, C., Analytical Determination of Blockage Effects in a Perforated Wall Transonic Wind Tunnel, Journal of the American Institute of Aeronautics and Astronautics, Vol. 15, pp. 511–517, 1977.

    Article  Google Scholar 

  90. Nixon, D., Calculation of Transonic Flows Using an Extended Integral Equation Method, Journal of the American Institute of Aeronautics and Astronautics, Vol. 15, pp. 295–296, 1977.

    Article  Google Scholar 

  91. Williams, M. H., Chi, M. R., and Dowell, E. H., Effects of Inviscid Parallel Shear Flow on Unsteady Aerodynamics and Flutter, Paper No. 77–158, 15th Aerospace Sciences Meeting, Los Angeles, California, 1977.

    Google Scholar 

  92. Nixon, D., An Alternative Treatment of Boundary Conditions for the Flow over Thick Wings, Aeronautical Quarterly, Vol. 15, pp. 295–296, 1977.

    Google Scholar 

  93. Cielak, Z. M., and Kinney, R. B., Analysis of Viscous Flow Past an Airfoil, Part II—Numerical Formulation and Results, Journal of the American Institute of Aeronautics and Astronautics, Vol. 16, pp. 105–110, 1978.

    Article  Google Scholar 

  94. Jordan, P. F., Reliable Lifting Surface Solutions for Unsteady Flow, Paper No. 78–228, 16th Aerospace Sciences Meeting, Huntsville, Alabama, 1978.

    Google Scholar 

  95. Nixon, D., Calculation of Unsteady Transonic Flows Using the Integral Equation Method, Paper No. 78–13, 16th Aerospace Sciences Meeting, Huntsville, Alabama, 1978.

    Google Scholar 

  96. Niyogi, P., Transonic Integral Equation Formulation for Lifting Profiles and Wings, Journal of the American Institute of Aeronautics and Astronautics, Vol. 16, pp. 92–94, 1978.

    Article  Google Scholar 

  97. Yates, J. E., Viscous Thin Airfoil Theory and the Kutta Condition, Paper No. 78–152, 16th Aerospace Sciences Meeting, Huntsville, Alabama, 1978.

    Google Scholar 

  98. Williams, M. H., Generalized Theodorsen Solution for Singular Integral Equations of the Airfoil Class (to appear).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fromme, J.A., Golberg, M.A. (1979). Numerical Solution of a Class of Integral Equations Arising in Two-Dimensional Aerodynamics—The Problem of Flaps. In: Golberg, M.A. (eds) Solution Methods for Integral Equations. Mathematical Concepts and Methods in Science and Engineering, vol 18. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1466-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1466-1_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1468-5

  • Online ISBN: 978-1-4757-1466-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics