Skip to main content

Effects of Macrobenthos on the Chemical Diagenesis of Freshwater Sediments

  • Chapter
Animal-Sediment Relations

Part of the book series: Topics in Geobiology ((TGBI,volume 100))

Abstract

In this chapter the effects of macrobenthos on chemical changes in sediments occurring during and after burial (i.e., chemical diagenesis) will be considered. The importance of sediments to the biogeochemical cycling of materials is well known (Mortimer, 1941, 1942, 1971; Lee, 1970). Freshwater sediments act as both a source and a sink for biologically important materials such as phosphorus, carbon, nitrogen, sulfur, and silicon. Furthermore, sediments are known to play an active role in regulating cycles of trace metals, radionuclides, and xenobiotics (Jones and Bowser, 1978). Because of this, knowledge of the chemical diagenesis of sediments is essential to an understanding of materials cycling in freshwater environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aller, R. C., 1977, The influence of deposit feeding benthos on chemical diagenesis of marine sediments, Ph.D thesis, Yale University, New Haven, Connecticut.

    Google Scholar 

  • Aller, R. C., 1978, The effects of animal—sediment interactions on geochemical processes near the sediment—water interface, in: Estuarine Interactions ( M. L. Wiley, ed.), pp. 157–172, Academic Press, New York.

    Google Scholar 

  • Aller, R. C., and Cochran, J. K., 1976, 234-Th/238-U disequilibrium in near shore sediments: Particle reworking and diagenetic time scales, Earth Planet. Sci. Lett. 20: 37–50.

    Google Scholar 

  • Aller, R. C., and Dodge, R. E., 1974, Animal-sediment relations in a tropical lagoon-Discovery Bay, Jamaica, J. Mar. Res. 32: 209–232.

    Google Scholar 

  • Aller, R. C., and Yingst, J. Y., 1978, Biogeochemistry of tube-dwellings: A study of the sedentary polychaete Amphitrite ornata (Leidy), J. Mar. Res. 36: 201–254.

    Google Scholar 

  • Alsterberg, G., 1922, Die respiratorischen Mechanismen der Tubificiden, Lunds Univ. Arsskr. 18: 1–176.

    Google Scholar 

  • Alsterberg, G., 1925, Die Nahrungszirkulation einiger Binnensetypen, Archiv. Hydrobiol. 15: 291–338.

    Google Scholar 

  • Amiard-Triquet, C., 1975, Etude experimentale de la contamination par le cerium 144 et le fer 59 d’un sédiment à Arenicola marina L. (Annelide Polychete), Cah. Biol. Mar. 15: 483–494.

    Google Scholar 

  • Andersen, J. M., 1977, Importance of the denitrification process for the rate of degradation of organic matter in lake sediments, in: Interactions between Sediments and Fresh Water ( H. L. Golterman, ed.), pp. 357–362, Junk, The Hague.

    Google Scholar 

  • Appleby, A. G., and Brinkhurst, R. O., 1970, Defecation rate of three tubificid oligochaetes found in the sediment of Toronto Harbour, Ontario, J. Fish. Res. Board Can. 27: 1971–1982.

    Google Scholar 

  • Baas Becking, L. G. M., Kaplan, I. R., and Moore, D., 1960, Limits of the natural environment in terms of pH and oxidation-reduction potentials, J. Geol. 68: 243–284.

    Google Scholar 

  • Ben-Yaakov, S., 1973, pH buffering of pore water of recent anoxic marine sediments, Limnol. Oceanogr. 18: 86–94.

    Google Scholar 

  • Berner, R. A., 1963, Electrode studies of hydrogen sulfide in marine sediments, Geochim. Gosmochim. Acta 27: 563–575.

    Google Scholar 

  • Berner, R. A., 1964a, An idealized model of dissolved sulfate distribution in recent sediments, Geochim. Cosmochim. Acta 28: 1497–1503.

    Google Scholar 

  • Berner, R. A., 1964b, Distribution and diagenesis of sulfur in some sediments from the Gulf of California, Mar. Geol. 1: 117–140.

    Google Scholar 

  • Berner, R. A., 1970, Sedimentary pyrite formation, Am. J. Sci. 268: 1–23.

    Google Scholar 

  • Berner, R. A., 1972, Sulfate reduction, pyrite formation, and the oceanic sulfur budget, in: Nobel Symposium 20: The Changing Chemistry of the Oceans ( D. Dyrssen and D. Jagner, eds.), pp. 347–361, Almquist and Wiksell, Stockholm.

    Google Scholar 

  • Berner, R. A., 1974, Kinetic models for the early diagenesis of nitrogen, sulfur, phosphorus, and silicon in anoxic marine sediments, in: The Sea, Volume 5: Marine Chemistry ( E. D. Goldberg, ed.), pp. 427–450, John Wiley and Sons, New York.

    Google Scholar 

  • Berner, R. A., 1976, The benthic boundary layer from the viewpoint of a geochemist, in: The Benthic Boundary Layer ( I. N. McCave, ed.), pp. 33–55, Plenum Press, New York.

    Google Scholar 

  • Berner, R. A., 1980, Early Diagenesis: A Theoretical Approach, Princeton University Press, Princeton, N.J.

    Google Scholar 

  • Brinkhurst, R. O., 1974, The Benthos of Lakes, St. Martin’s Press, New York.

    Google Scholar 

  • Burns, N. M. and Ross, C., 1972, Oxygen-nutrient relationships in the Central Basin of Lake Erie, in: Project Hypo (N. M. Ross and C. Ross, eds.), pp. 85–119, Canadian Center for Inland Waters Paper 6, Canadian Center for Inland Waters, Hamilton, Ontario.

    Google Scholar 

  • Carmouze, J. P., Golterman, H. L., and Pedro, C., 1977, The neoformation of sediments in Lake Chad; their influence on salinity control, in: Interactions between Sediments and Fresh Water ( H. L. Golterman, ed.), pp. 33–39, Junk, The Hague.

    Google Scholar 

  • Chamberlain, C. K., 1975, Recent lebensspuren in nonmarine aquatic environments, in: The Study of Trace Fossils ( R. W. Frey, ed.), pp. 431–458, Springer-Verlag, New York.

    Google Scholar 

  • Chapman, T. W., 1967, The transport properties of concentrated electrolytic solutions, Ph.D. thesis, University of California, Berkeley.

    Google Scholar 

  • Chatarpaul, L., Robinson, J. B., and Kaushik, N. K., 1979, Role of tubificid worms in nitrogen transformations in stream sediment, J. Fish. Res. Board Can. 36: 673–678.

    Google Scholar 

  • Chatarpaul, L., Robinson, J. B., and Kaushik, N. K., 1980, Effects of tubificid worms on denitrification and nitrification in stream sediment, Can. J. Fish. Aquat. Sci. 37: 656–663.

    Google Scholar 

  • Coker, R. E., Shira, A. R., Clark, H. W., and Howard, A. D., 1921, Natural history and propagation of fresh-water mussels, Bull. U.S. Bur. Fish. 37: 77–181.

    Google Scholar 

  • Cummins, K. W., 1973, Trophic relationships of aquatic insects, Annu. Rev. Entomol. 18: 183–206.

    Google Scholar 

  • D’Anglejan, B. F., 1967, Origin of marine phosphorites off Baja California, Mexico, Mar. Geol. 5: 15–44.

    Google Scholar 

  • Davies, S. N., and DeWiest, R. C. M., 1966, Hydrogeology, John Wiley and Sons, New York.

    Google Scholar 

  • Davis, R. B., 1974a, Stratigraphic effects of tubificids in profundal lake sediments, Limnol. Oceanogr. 19: 466–488.

    Google Scholar 

  • Davis, R. B., 1974b, Tubificids alter profiles of redox potential and pH in profundal lake sediments, Limnol. Oceanogr. 19: 342–346.

    Google Scholar 

  • Davis, R. B., Thurlow, D. L., and Brewster, R. E., 1975, Effects of burrowing tubificids on the exchange of phosphorus between lake sediment and overlying water, Verh. Int. Verein. Limnol. 19: 382–394.

    Google Scholar 

  • Dell, C. I., 1971, Late quaternary sedimentation in Lake Superior, Ph.D. thesis, University of Michigan, Ann Arbor.

    Google Scholar 

  • Dell, C. I., 1973, Vinianite: An authigenic phosphate mineral in Great Lake sediments, in: Proceedings of the 16th Conference on Great Lakes Research, pp. 1027–1028, International Association for Great Lakes Research, Ann Arbor, Michigan.

    Google Scholar 

  • Doyle, R. W. S., 1967, Eh and thermodynamic equilibrium in environments containing dissolved ferrous iron, Ph.D. thesis, Yale University, New Haven, Connecticut.

    Google Scholar 

  • Dutka, B. J., Bell, J. B., and Liu, D. L. S., 1974, Microbiological examination of offshore Lake Erie sediments, J. Fish. Res. Board Can. 31: 299–308.

    Google Scholar 

  • Edwards, R. W., 1958, The effect of larvae of Chironomus riparius Meigen on the redox potentials of settled activated sludge, Ann. Appl. Biol. 46: 457–464.

    Google Scholar 

  • Edwards, R. W., and Rolley, H. L. J., 1965, Oxygen consumption of river muds, J. Ecol. 53: 1–19.

    Google Scholar 

  • Emerson, S., and Widmer, G., 1978, Early diagenesis in anaerobic lake sediments. II. Thermodynamic and kinetic factors controlling the formation of iron phosphate, Geochim. Cosmochim. Acta 42: 1307–1316.

    Google Scholar 

  • Fisher, J. B., and Matisoff, G., 1981, High resolution vertical profiles of pH in recent sediments, Hybrobiologia 79: 277–284.

    Google Scholar 

  • Fisher, J. B., and Tevesz, M. J. S., 1975, Distribution and population density of Elliptio complanata (Mollusca) in Lake Pocotopaug, Connecticut, Veliger 18: 332–338.

    Google Scholar 

  • Fisher, J. B., Lick, W., McCall, P. L., and Robbins, J. A., 1980, Vertical mixing of lake sediments by tubificid oligochaetes, J. Geophys. Res. 85: 3997–4006.

    Google Scholar 

  • Gallepp, G. W., 1979, Chironomid influence on phosphorous release in sediment—water microcosms, Ecology 60: 547–556.

    Google Scholar 

  • Gallepp, G. W., Kitchell, J. F., and Bartell, S. M., 1978, Phosphorus release from lake sediments as affected by chironomids, Verh. Int. Verein. Limnol. 20: 458–465.

    Google Scholar 

  • Ganapati, S. V., 1949, The role of the bloodworm, Chironomus plumosus, in accounting for the presence of phosphorus and excessive free ammonia in the filtrates from the slow sand filters of the Madras water works, Zool. Soc. India J. 6: 41–43.

    Google Scholar 

  • Gardner, R. L., 1973, Chemical models for sulfate reduction in closed anaerobic marine environments, Geochim. Cosmochim. Acta 37: 53–68.

    Google Scholar 

  • Glasby, G. P., 1973, Interstitial waters in marine and lacustrine sediments: A review, J. R. Soc. N. Z. 3: 43–59.

    Google Scholar 

  • Goldberg, E. D., and Koide, M., 1962, Geochronological studies of deep sea sediments by the ionium/thorium method, Geochim. Cosmochim. Acta 26: 417–450.

    Google Scholar 

  • Goldhaber, M. B., 1974, Equilibrium and dynamic aspects of the marine geochemistry of sulfur, Ph.D. thesis, University of California, Los Angeles.

    Google Scholar 

  • Goldhaber, M. B., and Kaplan, I. R., 1975a, Apparent dissociation constants of hydrogen sulfide in chloride solutions, Mar. Chem. 3: 83–104.

    Google Scholar 

  • Goldhaber, M. B., and Kaplan, I. R., 1975b, Controls and consequences of sulfate reduction rates in recent marine sediments, Soil Sci. 119: 42–55.

    Google Scholar 

  • Gorham, E., 1964, Molybdenum, manganese, and iron in lake muds, Verh. Int. Verein. Limnol. 15: 330–332.

    Google Scholar 

  • Granéli, W., 1979, The influence of Chironomus plumosus larvae on the exchange of dissolved substances between sediment and water, Hycirobiologia 66: 149–159.

    Google Scholar 

  • Granéli, W., 1982, The influence of Chironomus plumosus on oxygen uptake of sediment, Arch. Hydrobiol. (in press).

    Google Scholar 

  • Guinasso, N. L., and Schink, D. R., 1975, Quantitative estimates of biological mixing rates in abyssal sediments, J. Geophys. Res. 80: 3032–3043.

    Google Scholar 

  • Hargrave, B. T., 1972, Oxidation–reduction potentials, oxygen concentration and oxygen uptake of profundal sediments in a eutrophic lake, Oikos 23: 167–177.

    Google Scholar 

  • Hargrave, B. T., 1975, Stability in structure and function of the mud–water interface, Verh. Int. Verein. Limnol. 19: 1073–1079.

    Google Scholar 

  • Harrison, A. G., and Thode, 1958, The kinetic isotope effect in the chemical reduction of sulfate, Tr. Faraday Soc. 53: 1648–1651.

    Google Scholar 

  • Hayes, F. R., 1964, The mud–water interface, Oceanogr. Mar. Biol. Annu. Rev. 2: 121–145.

    Google Scholar 

  • Hutchinson, G. E., 1957, A Treatise on Limnology, John Wiley and Sons, New York.

    Google Scholar 

  • Iovino, A., and Bradley, W., 1969, The role of larval chironomidae in the production of lacustrine copropel in Mud Lake, Marion County, Florida, Limnol. Oceanogr. 14: 898–900.

    Google Scholar 

  • Ivlev, V. S., 1939, Transformation of energy by aquatic animals. Coefficient of energy consumption by Tubifex tubifex (Oligochaeta), Int. Rev. Ges. Hydrobiol. Hydrogr. 38: 449–458.

    Google Scholar 

  • Jones, B. F., and Bowser, C. J., 1978, The mineralogy and related chemistry of lake sediments, in: Lakes: Chemistry, Geology, Physics ( A. Lerman, ed.), pp. 179–235, Springer-Verlag, New York

    Google Scholar 

  • Jernelöv, A., 1970, Release of methyl mercury from sediments with layers containing inorganic mercury at different levels, Limnol. Oceanogr. 15: 958–960.

    Google Scholar 

  • Kaplan, I. R., and Rittenberg, S. C., 1964, Microbiological fractionation of sulfur isotopes, J. Gen. Microbiol. 34: 195–212.

    Google Scholar 

  • Kikuchi, E., and Kurihara, Y., 1977, In vitro studies on the effects of tubificids on the biological, chemical, and physical characteristics of submerged ricefield soil and overlying water, Oikos 29: 348–356.

    Google Scholar 

  • Kirchner, W. B., 1975, The effect of oxidized material on the vertical distribution of freshwater benthic fauna, Freshwater Biol. 5: 423–429.

    Google Scholar 

  • Krezoski, J. R., 1981, The influence of zoobenthos on fine-grained particle reworking and benthic solute transport in Great Lakes sediments. Ph.D. thesis, University of Michigan, Ann Arbor.

    Google Scholar 

  • Krezoski, J. R., Mozley, S. C., and Robbins, J. A., 1978, Influence of benthic macroinvertebrates on mixing of profundal sediments in southeastern Lake Huron, Limnol. Oceanogr. 23: 1011–1016.

    Google Scholar 

  • Kuznetsov, S. I., 1970, The Microflora of Lakes and its Geochemical Activity, University of Texas Press, Austin.

    Google Scholar 

  • Lafon, G. M., and Mackenzie, F. T., 1966, Early evolution of the oceans—A weathering model, in: Studies in Paleo-Oceanography (W. W. Hay, ed.), Soc. Econ. Paleontol. Mineral. Spec. Publ. 20: 205–218.

    Google Scholar 

  • Lee, G. F., 1970, Factors affecting the transfer of materials between water and sediments, University of Wisconsin Water Resources Center, Eutrophication Information Program, Literature Review 1, University of Wisconsin, Madison.

    Google Scholar 

  • Li, Y.-H., and Gregory, S., 1974, Diffusion of ions in sea water and in deep sea sediments, Geochim. Cosmochim Acta 38: 703–714.

    Google Scholar 

  • Lundbeck, J., 1926, Die Bodentierwelt Norddeutschen Seen, Arch. Hydrobiol. Suppl 7.

    Google Scholar 

  • Lyman, F. E., 1943, Swimming and burrowing activities of mayfly nymphs of the genus Hexigenia, Ann. Entomol. Soc. Am. 26: 250–256.

    Google Scholar 

  • McCaffrey, R. J., Meyers, A. C., Davey, E., Morrison, G., Bender, M., Luedtke, N., Cullen, D., Froelich, P., and Klinkhammer, G., 1980, The relation between pore water chemistry and benthic fluxes of nutrients and manganese in Narragansett Bay, Rhode Island, Limnol. Oceanogr. 25: 31–44.

    Google Scholar 

  • McCall, P. L., 1979, Effects of deposit feeding oligochaetes on particle size and settling velocity of Lake Erie sediments, J. Sediment. Petrol. 49: 813–818.

    Google Scholar 

  • McCall, P. L., and Fisher, J. B., 1980, Effects of tubificid oligochaetes on physical and chemical properties of Lake Erie sediments, in: Aquatic Oligochaete Biology ( R. O. Brinkhurst and D. G. Cook, eds.), pp. 253–318, Plenum Press, New York.

    Google Scholar 

  • McCall, P. L., Tevesz, M. J. S., and Schwelgien, S. F., 1979, Sediment mixing by Lampsilis radiata siliquoidea (Mollusca) from western Lake Erie, J. Great Lakes Res. 5: 105–111.

    Google Scholar 

  • McLachlan, A. J., and McLachlan, S. M., 1976, Development of the mud habitat during the filling of two new lakes, Freshwater Biol. 6: 59–67.

    Google Scholar 

  • Manheim, F. T., 1970, The diffusion of ions in unconsolidated sediments, Earth Planet. Sci. Lett. 9: 307–309.

    Google Scholar 

  • Manheim, F. T., and Sayles, F. L., 1974, Composition and origin of interstitial waters of marine sediments, in: The Sea, Volume 5: Marine Chemistry ( E. D. Goldberg, ed.), pp. 527–568, John Wiley and Sons, New York.

    Google Scholar 

  • Marzolf, G. R., 1965, Substrate relations of the burrowing amphipod Pontoporeia affinis in Lake Michigan, Ecology 46: 579–592.

    Google Scholar 

  • Milbrink, G., 1969, Microgradient at the mud–water interface, Rep. Inst. Freshwater Res. Drottningholm 49: 129–148.

    Google Scholar 

  • Monakov, A. K., 1972, Review of studies on feeding of aquatic invertebrates conducted at the Institute of Biology of Inland Waters, Academy of Sciences, USSR, J. Fish. Res. Board Can. 29: 363–383.

    Google Scholar 

  • Mortimer, C. H., 1941, The exchange of dissolved substances between mud and water in lakes, J. Ecol. 29: 280–329.

    Google Scholar 

  • Mortimer, C. H., 1942, The exchange of dissolved substances between mud and water in lakes, J. Ecol. 30: 147–201.

    Google Scholar 

  • Mortimer, C. H., 1971, Chemical exchanges between sediments and water in the Great Lakes—Speculations on probable regulatory mechanisms, Limnol. Oceanogr. 16: 387–404.

    Google Scholar 

  • Müller, G., and Forstner, U., 1973, Recent iron ore formation in Lake Malawi, Africa, Miner. Deposita 8: 278–290.

    Google Scholar 

  • Neame, P. A., 1975, Benthic oxygen and phosphorus dynamics in Castle Lake, California, Ph.D. thesis, University of California, Davis.

    Google Scholar 

  • Neame, P. A., 1977, Phosphorus flux across the sediment–water interface, in: Interactions between Sediments and Fresh Water ( H. L. Golterman, ed.), pp. 307–312, Junk, The Hague.

    Google Scholar 

  • Newell, R. C., 1970, Biology of Intertidal Animals, Elsevier, New York.

    Google Scholar 

  • Norvell, W. A., 1974, Insolubilization of inorganic phosphate by anoxic lake sediment, Soil Sci. Soc. Am. Proc. 38: 441–445.

    Google Scholar 

  • Nozaki, Y., Cochran, J. K., Turekian, K. K., and Keller, G., 1977, Radiocarbon and (210) Pb distribution in submersible taken deep-sea cores from project FAMOUS, Earth Planet. Sci. Lett. 34: 167–173.

    Google Scholar 

  • Nriagu, J. O., 1968, Sulfur metabolism and sedimentary environment: Lake Mendota, Wisconsin, Limnol. Oceanogr. 13: 430–439.

    Google Scholar 

  • Nriagu, J. O., 1975, Sulphur isotopic variations in relation to sulphur pollution of Lake Erie, in: Isotope Ratios as Pollutant Source and Behavior Indicators, pp. 77–93, IAEA-SM191/28, International Atomic Energy Agency, Vienna.

    Google Scholar 

  • Nriagu, J. O., 1976, Phosphate—clay mineral relations in soils and sediments, Can. J. Earth Sci. 13: 717–736.

    Google Scholar 

  • Nriagu, J. O., and Dell, C. I., 1974, Diagenetic formation of iron phosphates in recent lake sediments, Am. Mineral. 59: 934–946.

    Google Scholar 

  • Otsuki, A., and Wetzel, R. G., 1972, Coprecipitation of phosphate with carbonates in a marl lake, Limnol. Oceanogr. 17: 763–767.

    Google Scholar 

  • Parry, G., 1960, Excretion, in: The Physiology of Crustacea ( T. H. Waterman, ed.), pp. 341–363, Academic Press, New York.

    Google Scholar 

  • Poddubnaya, T. L., 1961, Concerning the feeding of the high density species of tubificids in Rybinsk Reservoir, Tr. Inst. Biol. Vodokhran. Akad. Nauk SSSR 4: 219–231.

    Google Scholar 

  • Poddubnaya, T. L., and Sorokin, Yu. I., 1961, The depth of the layer of optimal feeding of tubificids in connection with their movements in the sediment, Izv. Inst. Biol. Vodokhran. AN SSSR 10: 14–17.

    Google Scholar 

  • Postgate, J. R., 1951, The reduction of sulphur compounds by Desulphovibrio desulphuricans, J. Gen. Microbiol. 5: 725–738.

    Google Scholar 

  • Potts, W. T. W., 1954a, The energetics of osmotic regulation in brackish and freshwater animals, J. Exp. Biol. 31: 618–630.

    Google Scholar 

  • Potts, W. T. W., 1954b, The rate of urine production of Anodonta cygnea, J. Exp. Biol. 31: 614–617.

    Google Scholar 

  • Presley, B. J., and Kaplan, I. R., 1968, Changes in dissolved sulfate, calcium, and carbonate from interstitial water of near-shore sediments, Geochim. Cosmochim. Acta 32: 1037–1048.

    Google Scholar 

  • Ramm, A. E., and Bella, D. A., 1974, Sulfide production in anaerobic microcosms, Limnol. Oceanogr. 19: 110–118.

    Google Scholar 

  • Rayera, O., 1955, Amount of mud displaced by some freshwater oligochaeta in relation to depth, Mem. Ist. Ital. Idrobiol. 8 (suppl.): 247–264.

    Google Scholar 

  • Rees, C. E., 1973, A steady state model for sulfur isotope fractionation in bacterial reduction process, Geochim. Cosmochim. Acta 37: 1141.

    Google Scholar 

  • Reid, R. C., Prausnitz, J. M., and Sherwood, T. K., 1977, The Properties of Gases and Liquids, McGraw-Hill, New York.

    Google Scholar 

  • Rhoads, D. C., 1970, Mass properties, stability, and ecology of marine muds related to burrowing activity, in: Trace Fossils (T. P. Crimes and J. C. Harper, eds.), pp. 391–406, Geol. J. Spec. Issue 3.

    Google Scholar 

  • Rhoads, D. C., 1974, Organism—sediment relations on the muddy sea floor, Oceanogr. Mar. Biol. Annu. Rev. 12: 263–300.

    Google Scholar 

  • Rhoads, D. C., and Young, D. K., 1970, The influence of deposit feeding organisms on sediment stability and community trophic structure, J. Mar. Res. 28: 150–178.

    Google Scholar 

  • Riley, J. P., 1971, The major and minor elements in seawater, in: Introduction to Marine Chemistry ( J. P. Riley and R. Chester, eds.), pp. 60–101, Academic Press, New York.

    Google Scholar 

  • Robbins, J. A., 1978, Geochemical and geographical applications of radioactive lead, in: Biogeochemistry of Lead ( J. O. Nriagu, ed.), pp. 285–337, Elsevier, Amsterdam.

    Google Scholar 

  • Robbins, J. A., Krezoski, J. R., and Mozley, S. C., 1977, Radioactivity in sediments of the Great Lakes: Post-depositional redistribution by deposit feeding organisms, Earth Planet. Sci. Lett. 36: 325–333.

    Google Scholar 

  • Robbins, J. A., McCall, P. L., Fisher, J. B., and Krezoski, J. R., 1979, Effects of deposit feeders on migration of cesium-137 in lake sediments, Earth Planet. Sci. Lett. 42: 277–287.

    Google Scholar 

  • Robinson, R. A., and Stokes, R. H., 1959, Electrolyte Solutions, Butterworths, London.

    Google Scholar 

  • Savilov, A. I., 1957, Biolgical aspects of the bottom fauna grouping of the North Okhotsk Sea, Tr. Inst. Okeanol. Mar. Biol. 20: 67–136.

    Google Scholar 

  • Schumacher, A., 1963, Quantitative Aspekte der Beziehung zwischen Stärke der Tubif icidenbesiedlung und Schichtdicke der Oxydationzone in den Süsswasserwatten der Unterelbe, Arch. Fischwiss. 14: 48–51.

    Google Scholar 

  • Shapiro, J., Edmondson, W. T., and Allison, D. E., 1971, Changes in the chemical composition of sediments of Lake Washington, Limnol. Oceanogr. 16: 437–452.

    Google Scholar 

  • Staddon, B. W., 1969, Water balance in Ilyocoris, Naucoridae, J. Exp. Biol. 51: 643–665.

    Google Scholar 

  • Stamm, H. H., and Kohlschutter, H. W., 1965, Die Sorption von Phosphationene an Eisen (III)-Hydroxide, J. Inorg. Nucl. Chem. 27: 2103–2108.

    Google Scholar 

  • Stobbart, R. H., and Shaw, J., 1974, Salt and water balance: Excretion, in: The Physiology of Insects ( M. Rockstein, ed.), pp. 361–446, Academic Press, New York.

    Google Scholar 

  • Stumm, W., and Morgan, J. J., 1970, Aquatic Chemistry, John Wiley and Sons, New York.

    Google Scholar 

  • Swain, F. M., 1965, Geochemistry of some quaternary lake sediments of North America, in: The Quaternary of the United States ( H. E. Wright and D. G. Frey, eds.), pp. 765–781, Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Tessenow, U., 1964, Experimentaluntersuchungen zur Kieselsäurerückführung aus dem Schlamm der See durch Chironomidenlarven (Plumosus-Gruppe), Arch. Hydrobiol. 60: 497–504.

    Google Scholar 

  • Tevesz, M. J. S., and McCall, P. L., 1979, Evolution of substratum preference in bivalves (Mollusca), J. Paleontol. 53: 112–120.

    Google Scholar 

  • Tevesz, M. J. S., Soster, F., and McCall, P. L., 1980, The effects of size selective feeding by oligochaetes on the physical properties of river sediments, J. Sediment. Petrol. 50: 561–568.

    Google Scholar 

  • Turpaeva, E. P., 1957, Food interrelationships of dominant species in marine benthic biocoenoses, Tr. Inst. Okeanol. Mar. Biol. 20: 137–148.

    Google Scholar 

  • Upchurch, S. B., 1976, Chemical characteristics of the Great Lakes, in: Great Lakes Basin Framework Study, Appendix 4: Limnology of Lakes and Embayments, pp. 151–238, Public Information Offices, Great Lakes Basin Commission, Ann Arbor, Michigan.

    Google Scholar 

  • Vallentyne, J. R., 1961, On the rate of formation of black spheres in recent sediments, Verh. Int. Verein. Limnol. 14: 291–295.

    Google Scholar 

  • Vallentyne, J. R., 1963, Isolation of pyrite spherules from recent sediments, Limnol. Oceanogr. 8: 16–30.

    Google Scholar 

  • Vogel, S., and Bretz, W. L., 1972, Interfacial organisms: Passive ventilation in the velocity gradients near surfaces, Science 175: 210.

    Google Scholar 

  • Wachs, B., 1967, Die Oligochaeten-Fauna der Fleissgewasser unter besonderer Berücksichtigung der Beziehungen zwischen der Tubificiden-Besiedlung und dem Substrat, Arch. Hydrobiol. 63: 310–386.

    Google Scholar 

  • Walker, K. R., and Bambach, R. K., 1974, Feeding by benthic invertebrates: Classification and terminology for paleoecological analysis, Lethaia 7: 67–78.

    Google Scholar 

  • Walshe, B. M., 1947, Feeding mechanisms of Chironomous larvae, Nature 160: 474.

    Google Scholar 

  • Weiler, R. R., 1973, The interstitial water composition in the sediments of the Great Lakes. I. Western Lake Ontario, Limnol. Oceanogr. 18: 918–931.

    Google Scholar 

  • Weissenbach, H., 1974, Untersuchungen zum Phophorhaushalt eines Hochgebirgsees (Vor-der Finstertaler See, Kühtai, Tirol) unter besonderer Berücksichtigung der Sedimente, Dissertation, Leopold Franzens-Universität, Innsbruck.

    Google Scholar 

  • Wetzel, R. G., 1975, Limnology, W. B. Saunders, Philadelphia.

    Google Scholar 

  • Williams, J. D. H., Jaquet, J. M., and Thomas, R. L., 1976a, Forms of phosphorus in the surficial sediments of Lake Erie, J. Fish. Res. Board Can. 33: 413–429.

    Google Scholar 

  • Williams, J. D. H., Murphy, T. P., and Mayer, T., 1976b, Rates of accumulation of phosphorus forms in Lake Erie sediments, J. Fish. Res. Board Can. 33: 430–439.

    Google Scholar 

  • Winfrey, M. R., and Zeikus, J. G., 1979, Anaerobic metabolism of immediate methane precursors in Lake Mendota, Appl. Environ. Microbiol. 37: 244–253.

    Google Scholar 

  • Wood, L. W., 1975, Role of oligochaetes in the circulation of water and solutes across the mud—water interface, Verh. Int. Verein. Limnol. 19: 1530–1538.

    Google Scholar 

  • Zinder, S. H., and Brock, T. D., 1978, Methane, carbon dioxide, and hydrogen sulfide production from the terminal methiol group of methionine by anaerobic lake sediments, Appl. Environ. Microbiol. 35: 344–352.

    Google Scholar 

  • ZoBell, C. E., 1946, Studies on redox potential of marine sediments, Bull. Am. Assoc. Petrol. Geol. 30: 477–513.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Springer Science+Business Media New York

About this chapter

Cite this chapter

Fisher, J.B. (1982). Effects of Macrobenthos on the Chemical Diagenesis of Freshwater Sediments. In: McCall, P.L., Tevesz, M.J.S. (eds) Animal-Sediment Relations. Topics in Geobiology, vol 100. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1317-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1317-6_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1319-0

  • Online ISBN: 978-1-4757-1317-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics