Skip to main content

Saccharide Traffic Signals in Receptor-Mediated Endocytosis and Transport of Acid Hydrolases

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 125))

Abstract

Endocytosis is a transport process which allows cells to interiorize extracellular material (1). Endocytic vesicles form when segments of the plasma membrane invaginate, pinch off, and enclose a volume of extracellular fluid. Fusion of plasma membrane to plasma membrane seals the neck of the vesicles (2) and the sites from which they invaginate. Fusion of the endocytic vesicle with another membrane permits the transport of the contents of the vesicle to another cellular compartment, or to the cell exterior.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. C. Silverstein, R. M. Steinman, and Z. A. Cohn, Endocytosis, Ann. Rev. Biochem. 46: 669–722 (1977)

    Article  PubMed  CAS  Google Scholar 

  2. R. G. W. Anderson, M. S. Brown, and J. L. Goldstein, Role of the Coated Endocytic Vesicle in the Uptake of Receptor-bound Low Density Lipoprotein in Human Fibroblasts, Cell 10: 351364 (1977).

    Google Scholar 

  3. W. W. Franke, M. R. Luder, J. Kortenbeck, H. Zerban, and T. W. Keenen, Involvement of vesicle coat material in casein secretion and surface regeneration, J. Cell Biol. 69: 173–195 (1976).

    Article  PubMed  CAS  Google Scholar 

  4. D. S. Friend, and M. G. Farquahr, Functions of coated vesicles during protein absorption in the rat vas deferens, J. Cell Biol. 35: 357–376 (1967).

    Article  PubMed  CAS  Google Scholar 

  5. J. E. Heuser, and T. S. Reese, Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction, J. Cell Biol. 57: 315–344 (1973).

    Article  PubMed  CAS  Google Scholar 

  6. S. C. Silverstein, J. Michl, and S. S. J. Sung, Phagocytosis, in: Transport of Macromolecules in Cellular Systems, S. C. Silverstein, ed., Dahlem Konferenzen, Berlin, pp. 245–264

    Google Scholar 

  7. P. J. Jacques, Endocytosis, in: Lysosomes in Biology and Pathway, J. T. Dingle and H. B. Fel, eds., North-Holland Publishing Co., Amsterdam, pp. 395–420 (1969).

    Google Scholar 

  8. R. M. Steinman, J. M. Silver, and Z. A. Cohn, Pinocytosis in fibroblasts: Quantitative studies in vitro, J. Cell Biol. 63: 665–687 (1974).

    Article  Google Scholar 

  9. G. E. Palade, M. Simionescu, and N. Simionescu, Transport of solutes across vascular endothelium, in: Transport of Macromolecules in Cellular Systems, S. C. Silverstein, ed., Dahlem Konferenzen, Berlin, pp. 145–166 (1978).

    Google Scholar 

  10. J. L. Goldstein, and M. S. Brown, The LDL pathway in human fibroblasts: a receptor mediated mechanism for the regulation of cholesterol metabolism, in: Current Topics in Cellular Regulation, 11, B. L. Horecher and E. R. Stadtman, eds., Academic Press, New York, pp. 147–181 (1976).

    Google Scholar 

  11. P. Youngdahl-Turner, L. E. Rosenberg, and R. H. Allen, Binding and uptake of transcobalmin II by human fibroblasts, J. Clin. Invest. 61: 133–141 (1978).

    Article  PubMed  CAS  Google Scholar 

  12. J. P. Kraehenbuhl, and L. Kuhn, Transport of Immunoglobulins Across Epothelia, in: Transport of Macromolecules in Cellular Systems, S. C. Silverstein, ed., Dahlem Konferenzen, Berlin, pp. 213–228 (1978).

    Google Scholar 

  13. F. Van Leuven, J. J. Cassimon, and H. Van Den Berghe, Uptake and degradation of a2-Macroglobulin-protease complexes in human cells in culture, Expt. Cell Res. 117: 273–282 (1978).

    Article  Google Scholar 

  14. G. Carpenter, and S. Cohen, I–labeled human epidermal growth factor: Binding, internalization and degradation in human fibroblasts, J. Cell Biol. 71–159–171 (1976).

    Article  PubMed  CAS  Google Scholar 

  15. M. Ascoli, and D. Puett, Degradation of receptor-bound human choriogonadotropin by murine Leydig tumor cells, J.’ Biol. Chem. 253: 4892–4899 (1978).

    PubMed  CAS  Google Scholar 

  16. F. R. Maxfield, J. Schlessinger, Y. Schecter, I. Pastan, and M. C. Willingham, Collection of insulin, EGF, and a2-Macroglobulin in the same patches on the surface of cultured fibroblasts and common internalization, Cell 14: 805–810 (1978).

    Article  PubMed  CAS  Google Scholar 

  17. G. Ashwell, and A. G. Morell, The role —a—surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins, Adv. Enzym. 41: 99–128 (1974).

    CAS  Google Scholar 

  18. R. L. Burger, R. J. Schneider, C. S. Mehlman, and R. H. Allen, Human R-type vitamin B12 binding proteins. II. The role of transcobalamin I, transcobalamin III, and the normal granulocyte vitamin B12 binding protein in the plasma transport of vitamin B12, J. Biol. Chem. 250: 7703–7713 (1975).

    Google Scholar 

  19. F. S. Furbish, C. J. Steer, J. A. Barringer, E. A. Jones, and R. O. Brady, The uptake of native and desialylated glucocerebrosidase by rat hepatocyte and Kupffer cells, Biochem. Biophys. Res. Commun. 81: 1047–1053 (1978).

    Article  PubMed  CAS  Google Scholar 

  20. R. O. Stockert, A. G. Morell, and I. H. Scheinberg, The existence of a second route for transfer of certain glycoproteins from the circulation into the liver, Biochem. Biophys. Res. Commun. 68: 988–993 (1976).

    Article  PubMed  CAS  Google Scholar 

  21. J. Lunney, and G. Ashwell, A hepatic receptor of avian origin capable of binding specifically modified glycoproteins, Proc. Nat. Acad. Sci. USA 73: 341–343 (1976).

    Article  PubMed  CAS  Google Scholar 

  22. T. L. Brown, L. A. Henderson, S. R. Thorpe, and J. W. Baynes, The effect of alpha-mannose-terminal oligosaccharides on the survival of glycoproteins in the circulation, Arch. Biochem. Bio hhyss. 188: 418–428 (1978).

    Article  CAS  Google Scholar 

  23. P. Stall,H H. Six, J. S. Rodman, P. Schlesinger, D. R. P. Tulsani, and O. Touster, Evidence for specific recognition sites mediating clearance of lysosomal enzymes in vivo, Proc. Nat. Acad. Sci. USA 73: 4045–4049 (1976).

    Article  Google Scholar 

  24. D. T. Achord, F. E. Brot, A. Gonzalez-Noriega, W. S, Sly, and P. Stahl, Human ß-glucuronidase II. Fate of infused human placental ß-glucuronidase in the rat, Pediat. Res. 11: 816–822 (1977).

    Article  PubMed  CAS  Google Scholar 

  25. D. T. Achord, F. E. Brot, C. E. Bell, and W. S. Sly, Human g-glucuronidase: In vivo clearance and in vitro uptake by a glycoprotein recognition system on reticuloendothelial cells, Cell 15: 269–278 (1978).

    Article  PubMed  CAS  Google Scholar 

  26. D. T. Achord, F. E. Brot, and W. S. Sly, Inhibition of the rat clearance systems for agalacto-orosomucoid by yeast mannans and by mannose, Biochem. Biophys. Res. Commun. 77: 409–415 (1977).

    Article  PubMed  CAS  Google Scholar 

  27. P. D. Stahl, J. S. Rodman, M. J. Miller, and P. H. Schlesinger, Evidence for receptor-mediated binding of glycoproteins, glycoconjugates, and lysosomal glycosidases by alveolar macrophages, Proc. Nat. Acad. Sci. USA 75: 1399–1403 (1978).

    Article  PubMed  CAS  Google Scholar 

  28. T. Kawasaki, Y. Mizuno, and I. Yamashima, Mannan binding proteins of rat tissues, Fed. Proc. 38: 468 Abst. (1979).

    Google Scholar 

  29. P. Stahl, and P. Schlesinger, Mannose/N-Acetylglucosamine receptor: Plasma clearance and macrophage uptake of glycoconjugates and lysosomal glycosidases. Fed. Proc. 38: 467 Abst. (1979).

    Google Scholar 

  30. C. J. Steer, F. S. Furbish, J. A. Barringer, R. O. Brady, and E. A. Jones, The uptake of agalacto-glucocerebrosidase by rat hepatocytes and Kupffer cells, FEBS Lett. 91: 202–205 (1978).

    Article  PubMed  CAS  Google Scholar 

  31. E. F. Neufeld, T. W. Lim, and L. J. Shapiro, Inherited disorders of lysosomal metabolism, Ann. Rev. Biochem. 44: 357–376 (1975).

    Article  PubMed  CAS  Google Scholar 

  32. E. F. Neufeld, G. N. Sando, A. J. Garvin, and L. H. Rome, The transport of glycosomal enzymes, J. Supramol. Struct 6: 95–101 (1977).

    Article  PubMed  CAS  Google Scholar 

  33. S. Hickman, and E. F. Neufeld, A hypothesis for I-cell disease: defective hydrolases that do not enter lysosomes, Biochem. Biphys. Res. Commun. 49: 992–999 (1972)

    Article  CAS  Google Scholar 

  34. A. Kaplan, D. T. Achord, and W. S. Sly, Phosphohexosyl components of a lysosomal enzyme are recognized by pinocytosis receptors on human fibroblasts, Proc. Nat. Acad. Sci. 74: 2026–2030 (1977).

    Article  PubMed  CAS  Google Scholar 

  35. A. Kaplan, D. Fischer, D. Achord, and W. S. Sly, Phosphohexosyl recognition is a general characteristic of pinocytosis of lysosomal glycosidases by human fibroblasts, J. Clin. Inv. 60: 1088–1093 (1977).

    Article  CAS  Google Scholar 

  36. G. N. Sando, and E. F. Neufeld, Recognition and receptor-mediated uptake of a lysosomal enzyme a-L-iduronidase, by cultured fibroblasts, Cell 12: 619–627 (1977).

    Article  PubMed  CAS  Google Scholar 

  37. K. Ullrich, G. Mersmann, E. Weber, and K. von Figura, Evidence for lysosomal enzyme recognition by human fibroblasts via a phosphorylated carbohydrate moiety, Biochem. J. 170: 643–650 (1978).

    PubMed  CAS  Google Scholar 

  38. S. Hickman, L. J. Shapiro, and E. F. Neufeld, A recognition marker required for uptake of a lysosomal enzyme by cultured fibroblasts, Biochem, Biophys. Res. Commun, 57: 55–61 (1974).

    Article  CAS  Google Scholar 

  39. V. Hieber, J. Distler, R. Myerowitz, R. D. Schmickel, and C. W. Jourdian, The role of glycosidically bound mannose in the assimilation of 6-galactosidase by ß-galactosidase deficient fibroblasts, Biochem. Biophys. Res. Commun. 73: 710–717 (1976).

    Article  PubMed  CAS  Google Scholar 

  40. G. Sahagian, J. Distler, V. Hieber, R. Schmickel, and G. W. Jourdian, Role of mannose-6-phosphate in Sgalactosidase assimilation, Fed. Proc. 38: 467 Abst. (1979).

    Google Scholar 

  41. A. Kaplan, D. Fischer, and W. S. Sly, Correlation of structural features of phosphomannans with their ability to inhibit pinocytosis of human ß-glucuronidase by human fibroblasts, J. Biol. Chem. 253: 647–650 (1978).

    PubMed  CAS  Google Scholar 

  42. H. D. Fischer, M. Natowicz, W. S. Sly, and R. K. Bretthauer, Fibroblast receptor for lysosomal enzyme mediates uptake of phosphomannans, Fed. Proc. 38: 467 Abst. (1979).

    Google Scholar 

  43. W. S. Sly, A. Gonzalez-Noriega, M. Natowicz, H. D. Fischer, and J. P. Chambers, Role of the phosphomannosyl recognition marker in the uptake and transport of lysosomal enzymes. Fed. Proc. 38: 467 Abst. (1979).

    Google Scholar 

  44. W. S. Sly, D. T. Achord, and A. Kaplan, Phosphohexose on lysosomal enzymes is the common recognition marker for pinocytosis receptor on fibroblasts, in: Protein Turnover and Lysosome Function, H. L. Segal and D. J, Doyle, eds., Academic Press, New York (1978).

    Google Scholar 

  45. A. Hasilik, L. H. Rome, and E. F. Neufeld, Processing of lysosomal enzymes in human skin fibroblasts, Fed. Proc 38: 467 Abst. (1979).

    Google Scholar 

  46. W. S. Sly, and P. Stahl, Receptor mediated uptake of lysosomal enzymes, in: Transport of Macromolecules in Cellular Systems, S. C. Silverstein, ed., Dahlem Konferenzen, Berlin, pp. 229–244 (1978).

    Google Scholar 

  47. K. von Figura, and E. Weber, An alternative hypothesis of cellular transport of lysosomal enzymes in fibroblasts, Biochem. J. 176: 943–956 (1978).

    Google Scholar 

  48. J. B. Lloyd, Cellular transport of lysosomal enzymes-an alternate hypothesis, Biochem. J. 164: 281–282 (1977).

    PubMed  CAS  Google Scholar 

  49. J. H. Glaser, K. J. Roozen, F. E. Brot, and W. S. Sly, Multiple isoelectric and recognition forms of human ß-glucuronidase activity, Arch. Biochem. Biophys. 166: 536–542 (1975).

    Article  PubMed  CAS  Google Scholar 

  50. G. D. Vladutiu, and M. C. Rattazzi, Abnormal lysosomal hydro-lases excreted by cultured fibroblasts in I-cell disease (mucolipidosis II), Biochem. Biophys. Res. Commun. 67: 956–964 (1975).

    Article  PubMed  CAS  Google Scholar 

  51. J. P. Prieels, S. V. Pizzo, L. R. Glasgow, J. C. Paulson, and R. L. Hill, Hepatic receptor that specifically binds oligosaccharides containing fucosyl cd+3 N-acetylglucosamine linkages, Proc. Nat. Acad. Sci. USA 75: 2215–2219 (1978).

    Article  PubMed  CAS  Google Scholar 

  52. J. Kawasaki, R. Etoh, and I. Yamashima, Isolation and characterization of a mannan-binding protein from rabbit liver, Biochem. Biophys. Res. Commun. 81: 1018–1024 (1978).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Plenum Press, New York

About this chapter

Cite this chapter

Sly, W.S. (1980). Saccharide Traffic Signals in Receptor-Mediated Endocytosis and Transport of Acid Hydrolases. In: Svennerholm, L., Mandel, P., Dreyfus, H., Urban, PF. (eds) Structure and Function of Gangliosides. Advances in Experimental Medicine and Biology, vol 125. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-7844-0_39

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-7844-0_39

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-7846-4

  • Online ISBN: 978-1-4684-7844-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics