Skip to main content

Biohalogenation

  • Chapter
  • 149 Accesses

Part of the book series: Biochemistry of the Elements ((BOTE,volume 9A+B))

Abstract

A vast number of halogenated compounds are present in the biosphere. While most of these have resulted from the work of synthetic chemists, a large number are naturally occurring—products of nature’s halogenation processes. The majority of these naturally occurring halogenated compounds are produced by haloperoxidases, a group of enzymes widely distributed in nature that are capable of halogenating a broad spectrum of organic substrates. A comprehensive review of recent research involved with isolation, identification, and biological evaluation of naturally occurring halogenated compounds, now an active area of natural products chemistry, is beyond the scope of this chapter. Recent reviews are available and will be cited (e.g., Neidleman and Geigert, 1986, 1987). While examples of halometabolites produced by various species will be given—particularly compounds that have useful medical applications—the emphasis in this chapter will be placed on the biochemical processes that produce the halometabolites. Thus, the mechanism of halogenation by haloperoxidases will be reviewed, and specific examples of haloperoxidases will be given, including recently identified vanadium-containing nonheme haloperoxidases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andrews, P. C., and Krinsky, N. I., 1982. A kinetic analysis of the interaction of human myeloperoxidase with hydrogen peroxide, chloride ions, and protons, J. Biol. Chem. 257: 13240–13245.

    PubMed  CAS  Google Scholar 

  • Beissner, R. S., Guilford, W. J., Coates, R. M., and Hager, L. P., 1981. Synthesis of brominated heptanones and bromoform by a bromoperoxidase of marine origin, Biochemistry 20: 3724–3731.

    Article  PubMed  CAS  Google Scholar 

  • Blanke, S. R., and Hager, L. P., 1988. Identification of the fifth axial heme ligand of chloroperoxidase, J. Biol. Chem. 263: 18739–18743.

    PubMed  CAS  Google Scholar 

  • Bohlmann, F., Jakupovic, J., King, R. M., and Robinson, H., 1981. New germacranolides, guaianolides and rearranged guaianolides from Lasiolaena santosii, Phytochemistry 20: 1613–1622.

    Article  CAS  Google Scholar 

  • Brown, F. S., and Hager, L. P., 1967. Chloroperoxidase. IV. Evidence for an ionic electrophilic substitution mechanism, J. Am. Chem. Soc. 89: 719–720.

    Article  PubMed  CAS  Google Scholar 

  • Carte, B., and Faulkner, D. J., 1983. Defensive metabolites from three nembrothid nudibranchs, J. Org. Chem. 48: 2314–2318.

    Article  Google Scholar 

  • Carter, G. T., Rinehart, K. L., Jr., Li, H. L., Kuentzel, S. L., and Conner, J. L., 1978. Brominated indoles from Laurencia brongniartii, Tetrahedron Lett. 1978: 4479–4482.

    Article  Google Scholar 

  • Cutterbuck, P. W., Mukhopadhyay, S. L., Oxford, A. E., and Raistrick, H., 1940. Studies in the biochemistry of micro-organisms. 65 (A) A survey of chlorine metabolism by moulds. (B) Caldariomycin, C5 Fig 02C12, a metabolic product of Caldariomyces fumago Woronichin, Biochem. J. 34: 664–677.

    Google Scholar 

  • Dawson, J. H., 1988. Probing structure-function relations in heme-containing oxygenases and peroxidases, Science 240: 433–439.

    Article  PubMed  CAS  Google Scholar 

  • de Boer, E., Tromp, M. G. M., Plat, H., Krenn, G. E., and Wever, R., 1986. Vanadium(V) as an essential element for haloperoxidase activity in marine brown algae: Purification and characterization of a vanadium(V)-containing bromoperoxidase from Laminaria saccharina, Biochim. Biophys. Acta 872: 104–115.

    Article  Google Scholar 

  • de Boer, E., Boon, K., and Wever, R., 1988. Electron paramagnetic resonance studies on conformational states and metal ion exchange properties of vanadium bromoperoxidase, Biochemistry 27: 1629–1635.

    Article  Google Scholar 

  • Dunford, H. B., Lambeir, A.-M., Kashem, M. A., and Pickard, M., 1987. On the mechanism of chlorination by chloroperoxidase, Arch. Biochem. Biophys. 252: 292–302.

    Article  PubMed  CAS  Google Scholar 

  • Fang, G.-H., Kenigsberg, P., Axley, M. J., Nuell, M., and Hager, L. P., 1986. Cloning and sequencing of chloroperoxidase cDNA, Nucleic Acids Res. 14: 8061–8071.

    Article  PubMed  CAS  Google Scholar 

  • Fenical, W., 1979. Molecular aspects of halogen-based biosynthesis of marine natural products, Recent Adv. Phytochem. 13: 219–239.

    CAS  Google Scholar 

  • Fenical, W., 1982. Natural products chemistry in the marine environment, Science 215: 923–928.

    Article  PubMed  CAS  Google Scholar 

  • Fowden, L., 1968. The occurrence and metabolism of carbon-halogen compounds, Proc. Roy. Soc. B 171: 5–18.

    Article  CAS  Google Scholar 

  • Fusetani, N., 1987. Marine metabolites which inhibit development of echinoderm embryos, in Bioorganic Marine Chemistry, Vol. 1 ( P. J. Scheuer, ed.), Springer-Verlag, Heidelberg, pp. 61–92.

    Chapter  Google Scholar 

  • Gonzalez, A. G., Arteaga, J. M., Martin, J. D., Rodriguez, M. L., Fayos, J., and MartinezRipolls, M., 1978. Two new polyhalogenated monoterpenes from the red alga Plocamium cartilagineum, Phytochemistry 17: 947–948.

    Article  CAS  Google Scholar 

  • Gonzalez, A. G., Darias, V., and Estevez, E., 1982. Chemotherapeutic activity of polyhalogenated terpenes from Spanish algae, Planta Med. 44: 44–46.

    Article  PubMed  CAS  Google Scholar 

  • Gschwend, P. M., MacFarland, J. K., and Newman, K. A., 1985. Various halogenated compounds released to seawater from temperate marine macroalgae, Science 227: 1033–1035.

    Article  PubMed  CAS  Google Scholar 

  • Iguchi, K., Kaneta, S., Mori, K., Yamada, Y., Honda, A., and Mori, Y., 1985. Chlorovulones, new halogenated marine prostanoids with an antitumor activity from the stolonifer Clavularia virdis Quoy and Gaimard, Tetrahedron Lett. 26: 5787–5790.

    Article  CAS  Google Scholar 

  • Itoh, N., Izumi, Y., and Yamada, H., 1986. Characterization of nonheme type bromoperoxidase in Corallina pilulifera, J. Biol. Chem. 261: 5194–5200.

    PubMed  CAS  Google Scholar 

  • Itoh, N., Izumi, Y., and Yamada, H., 1987. Haloperoxidase-catalyzed halogenation of nitrogen-containing aromatic heterocycles represented by nucleic bases, Biochemistry 26: 282–289.

    Article  CAS  Google Scholar 

  • Kimura, S., Kotani, T., McBride, O. W., Umeki, K., Hirai, K., Nakayama, T., and Ohtaki, S., 1987. Human thyroid peroxidase: Complete cDNA and protein sequence, chromosome mapping, and identification of two alternately spliced mRNAs, Proc. Natl. Acad. Sci. USA 84: 5555–5559.

    Article  PubMed  CAS  Google Scholar 

  • Krenn, B. E., Plat, H., and Wever, R., 1988. Purification and some characteristics of a nonhaem bromoperoxidase from Streptomyces aureofaciens, Biochim. Biophys. Acta 952: 255–260.

    Article  PubMed  CAS  Google Scholar 

  • Lambeir, A.-M., and Dunford, H. B., 1983. A steady state kinetic analysis of the reaction of chloroperoxidase with peracetic acid, chloride, and 2-chlorodimedone, J. Biol. Chem. 258: 13558–13563.

    PubMed  CAS  Google Scholar 

  • Lee, T. D., Geigert, J., Dalietos, D. J., and Hirano, D. S., 1983. Neighboring group migration in enzyme-mediated halohydrin formation, Biochem. Biophys. Res. Commun. 110: 880–883.

    Article  PubMed  CAS  Google Scholar 

  • Le-Van, N., and Wratten, S. J., 1984. Compound 30.4, an unusual chlorinated 1,4-benzoxazin-3-one derivative from corn (Zea mays), Tetrahedron Lett. 25: 145–148.

    Article  CAS  Google Scholar 

  • Libby, R. D., Thomas, J. A., Kaiser, L. W., and Hager, L. P., 1982. Chloroperoxidase halogenating reactions. Chemical versus enzymic halogenation intermediates, J. Biol. Chem. 257: 5030–5037.

    PubMed  CAS  Google Scholar 

  • Liu, T.-N. E., M’Timkulu, T., Geigert, J., Wolf, B., Neidleman, S. L., Silva, D., and HunterCevera, J. C., 1987. Isolation and characterization of a novel nonheme chloroperoxidase, Biochem. Biophys. Res. Commun. 142: 329–333.

    Article  PubMed  CAS  Google Scholar 

  • Manthey, J. A., and Hager, L. P., 1989. Characterization of the catalytic properties of bromoperoxidase, Biochemistry 28: 3052–3057.

    Article  CAS  Google Scholar 

  • McConnell, O. J., and Fenical, W., 1977a. Halogenated metabolites-including Favorsky rearrangement products-from the red seaweed Bonnemaisonia nootkana, Tetrahedron Lett. 1977: 4159–4162.

    Article  Google Scholar 

  • McConnell, O. J., and Fenical, W., 1977b. Halogen chemistry of the red alga Asparagopsis, Phytochemistry 16: 367–374.

    Article  CAS  Google Scholar 

  • Morris, D. R., and Hager, L. P., 1966. Chloroperoxidase I. Isolation and properties of the crystalline glycoprotein, J. Biol. Chem. 241: 1763–1768.

    PubMed  CAS  Google Scholar 

  • Munro, M. H. G., Luibrand, R. T., and Blunt, J. W., 1987. The search for antiviral and anticancer compounds from marine organisms, in Bioorganic Marine Chemistry, Vol. 1 ( P. J. Scheuer, ed.), Springer-Verlag, Heidelberg, pp. 93–176.

    Chapter  Google Scholar 

  • Neary, J. T., Soodak, M., and Maloof, F., 1984. Iodination by thyroid peroxidase, Methods Enzymol. 107: 445–476.

    Article  PubMed  CAS  Google Scholar 

  • Neidleman, S. L., 1975. Microbial halogenation, CRC Crit. Rev. Mircrobiol. 5:333–358. Neidleman, S. L., and Geigert, J., 1983. The enzymatic synthesis of heterogenous dihalide derivatives: A unique biocatalytic discovery, Trends Biotechnol. 1: 21–25.

    Article  Google Scholar 

  • Neidleman, S. L., and Geigert, J., 1986. Biohalogenation: Principles, Basic Roles, and Applications, Ellis Horwood, Chichester, England.

    Google Scholar 

  • Neidleman, S. L., and Geigert, J., 1987. Biological halogenation: Roles in nature, potential in industry, Endeavor 11: 5–15.

    Article  CAS  Google Scholar 

  • Ortiz de Montellano, P. K., Choe, Y. S., DePillis, G., and Catalano, C. E., 1987. Structure-mechanism relationships in hemoproteins. Oxygenations catalyzed by chloroperoxidase and horseradish peroxidase, J. Biol. Chem. 262: 11641–11646.

    Google Scholar 

  • Osada, H., and Isono, K., 1985. Mechanism of action and selective toxicity of ascamycin, a nucleoside antibiotic, Antimicrob. Agents Chemother. 27: 230–233.

    PubMed  CAS  Google Scholar 

  • Plat, H., Krenn, B. E., and Wever, R., 1987. The bromoperoxidase from the lichen Xanthoria parietina is a novel vanadium enzyme, Biochem. J. 248: 277–279.

    PubMed  CAS  Google Scholar 

  • Ramakrishnan, K., Oppenhuizen, M. E., Saunders, S., and Fisher, J., 1983. Stereoselectivity of chloroperoxidase-dependent halogenation, Biochemistry 22: 3271–3277.

    Article  PubMed  CAS  Google Scholar 

  • Sanada, M., Miyano, T., Iwadara, S., Williamson, J. M., Arison, B. H., Smith, J. L., Douglas, A. W., Liesch, J. M., and Inamine, E., 1986. Biosynthesis of fluorothreonine and fluoroacetic acid by the thienamycin producer, Streptomyces cattleya, J. Antibiot. 39: 259–265.

    Article  PubMed  CAS  Google Scholar 

  • Schmitz, F. J., and Gopichand, Y., 1978. (7E, 13, 15Z)-14,16-Dibromo-7,13,15hexadecatriene-5-ynoic acid. A novel dibromo acetylenic acid from the marine sponge Xestospongia muta, Tetrahedron Lett. 1978: 3637–3640.

    Google Scholar 

  • Siuda, J. F., and DeBernardis, J. F., 1973. Naturally occurring halogenated organic compounds, Lloydia 36: 107–143.

    PubMed  CAS  Google Scholar 

  • Siuda, J. F., VanBlaricom, G. R., Shaw, P. D., Johnson, R. D., White, R. H., Hager, L. P., and Rinehart, K. L., Jr., 1975. 1-Iodo-3,3-bromo-2-heptanone, 1,1,3,3-tetrabromo-2heptanone, and related compounds from the red alga Bonnemaisonia hamifera, J. Am. Chem. Soc. 97: 937–938.

    Google Scholar 

  • Sono, M., Dawson, J. H., Hall, K., and Hager, L. P., 1986. Ligand and halide binding properties of chloroperoxidase: Peroxidase-type active site heure environment with cytochrome P-450 type endogenous axial ligand and spectral properties, Biochemistry 25: 347–356.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, M., Morita, Y., Yanagisawa, A., Baker, B. J., Scheuer, P. J., and Noyori, R., 1988. Synthesis and structural revision of (7E)- and (7Z)-punaglandin 4, J. Org. Chem. 53: 286–295.

    Article  CAS  Google Scholar 

  • Theiler, R., Cook, J. C., Hager, J. F., and Siuda, J. F., 1978. Halohydrocarbon synthesis by bromoperoxidase, Science 202: 1094–1096.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, E. L., Pera, K. A., Smith, K. W., and Chwang, A. K., 1983. Inhibition of Streptococ- cus mutans by the lactoperoxidase antimicrobial system, Infect. Immun. 39: 767–778.

    PubMed  CAS  Google Scholar 

  • Turner, C. D., Chernoff, S. B., Taurog, A., and Rawitch, A. B., 1983. Differences in iodinated peptides and thyroid hormone formation after chemical and thyroid peroxidase-catalyzed iodination of human thyroglobulin, Arch. Biochem. Biophys. 222: 245–258.

    Article  PubMed  CAS  Google Scholar 

  • Turner, W. B., 1971. Fungal Metabolites, Academic Press, New York.

    Google Scholar 

  • Tymiak, A. A., Rinehart, K. L., Jr., and Bakus, G. J., 1985. Constituents of morphologically similar sponges. Aplysina and Smenospongia species, Tetrahedron 41: 1039–1047.

    Article  CAS  Google Scholar 

  • van Pee, K.-H., and Lingens, F., 1984. Detection of a bromoperoxidase in Streptomyces phaeochromogenes, FEBS Lett. 173: 5–8.

    Article  PubMed  Google Scholar 

  • van Pee, K.-H., and Lingens, F., 1985. Purification of bromoperoxidase from Pseudomonas aureofaciens, J. Bacteriol. 161: 1171–1175.

    PubMed  Google Scholar 

  • Welinder, K. G., 1976. Covalent structure of the glycoprotein horseradish peroxidase (EC 1.11.1.7), FEBS Lett. 72: 19–23.

    Article  PubMed  CAS  Google Scholar 

  • Weyer, R., de Boer, E., Plat, H., and Krenn, B. E., 1987. Vanadium-an element involved in the biosynthesis of halogenated compounds and in nitrogen fixation, FEBS Lett. 216: 1–3.

    Article  Google Scholar 

  • Weyer, R., Krenn, B. E., de Boer, E., Offenberg, H., and Plat, H., 1988, Structure and function of vanadium-containing bromoperoxidases, Frog. Clin. Biol. Res. 274: 477–493.

    Google Scholar 

  • Wiesner, W., van Pee, K.-H., and Lingens, F., 1986. Detection of a new chloroperoxidase in Pseudomonas pyrrocinia, FEBS Lett. 209: 321–324.

    Article  PubMed  CAS  Google Scholar 

  • Wiesner, W., van Pee, K.-H., and Lingens, F., 1988. Purification and characterization of a novel bacterial non-heme chloroperoxidase from Pseudomonas pyrrocinia, J. Biol. Chem. 263: 13725–13732.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Plenum Press, New York

About this chapter

Cite this chapter

Kirk, K.L. (1991). Biohalogenation. In: Biochemistry of the Elemental Halogens and Inorganic Halides. Biochemistry of the Elements, vol 9A+B. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-5817-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-5817-6_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-5819-0

  • Online ISBN: 978-1-4684-5817-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics