Skip to main content

Experimental Alcoholism Induces Phosphorus and Magnesium Deficiency in Skeletal Muscle

  • Chapter
Regulation of Phosphate and Mineral Metabolism

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 151))

  • 179 Accesses

Abstract

Structural, electrochemical and biochemical derangements of skeletal muscle are exceptionally common findings in patients with severe, chronic alcoholism. Collectively, these abnormalities represent alcoholic myopathy. Studies conducted in our laboratories during the past eight years on patients and experimental animals suggest that skeletal muscle is consistently damaged by chronic exposure to ethanol1–4. In brief, prominent findings include a substantial depression of muscle cell phosphorus and magnesium content, while calcium is markedly elevated. As occurs in any injured cell, contents of sodium and chloride are elevated, while potassium tends to be reduced. These changes in muscle cell composition may occur either with or without elevated serum levels of creatine Phosphokinase (CPK) activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.R. Ferguson, N.W. Carter, R. Haller, and J.P. Knochel, Chronic experimental alcoholism reproduces derangements of clinical alcoholic myopathy, Clin. Res. 27:794A (1980).

    Google Scholar 

  2. E.R. Ferguson, J.D. Blachley, and J.P. Knochel, Changes in rat skeletal muscle ionic composition and transport activity induced by chronic ethanol administration. Clin. Res. 28:843A (1980).

    Google Scholar 

  3. J.P. Knochel, G.L. Bilbrey, T.J. Fuller, and N.W. Carter, The muscle cell in chronic alcoholism: The possible role of phosphate depletion in alcoholic myopathy. Ann. New York Acad. Sci. 252:274–280 (1975).

    Article  CAS  Google Scholar 

  4. R. Anderson, M. Cohen, R. Haller J. Elms, N.W. Carter, and J.P. Knochel, Skeletal muscle phosphorus and magnesium deficiency in alcoholic myopathy. Min. Electrol. Metab. 4:106:112 (1980).

    Google Scholar 

  5. E.R. Ferguson, N.W. Carter, R. Haller, and J.P. Knochel, Effects of chronic ethanol administration on skeletal muscle ionic composition and transport activity. Fed. Proc. 39:744 (1980).

    Google Scholar 

  6. J.C. Skou, Enzymatic basis for active transport of Na+ and K+ across cell membranes. Physiol. Rev. 45:596–617 (1965).

    PubMed  CAS  Google Scholar 

  7. J.N. Cunningham, N.W. Carter, F.C. Rector, Jr., and D.W. Seldin, Resting transmembrane potential difference of skeletal muscle in normal subjects and severely ill patients. J. Clin. Invest. 50:49–59 (1971).

    Article  PubMed  CAS  Google Scholar 

  8. T.J. Fuller, N.W. Carter, C. Barcenas, and J.P. Knochel, Reversible changes of the muscle cell in experimental phosphorus deficiency. J. Clin. Invest. 57:1019–1024 (1976).

    Article  PubMed  CAS  Google Scholar 

  9. G.L. Bilbrey, N.W. Carter, M.G. White, J.F. Schilling, and J.P. Knochel, Potassium deficiency in chronic renal failure, Kid. Intl. 4:423–430 (1973).

    Article  CAS  Google Scholar 

  10. Y. Asano, U.A. Liberman, and I.S. Edelman, Relationships between Na+ dependent respiration and Na+ + K+ — adenosine triphosphatase activity in rat skeletal muscle. J. Clin. Invest. 51:368–379 (1976).

    Article  Google Scholar 

  11. C.R. Fiske, and Y. Subbarow, The colorinetric determination of phosphorus. J. Biol. Chem. 66:375–400 (1925).

    CAS  Google Scholar 

  12. O.H. Lowry, N.J. Rosenbrough, A.L. Farr, and R.J. Randall, Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275 (1951).

    PubMed  CAS  Google Scholar 

  13. J.M. Kalbfleisch, R.D. Linderman, H.E. Ginn, and W.O. Smith, Effects of ethanol administration on urinary excretion of magnesium and other electrolytes in alcoholic and normal subjects. J. Clin. Invest. 42:1471–1475 (1963).

    Article  PubMed  CAS  Google Scholar 

  14. E. Rubin, Alcoholic myopathy in heart and skeletal muscle. N. Engl. J. Med. 301:28–33 (1979).

    Article  PubMed  CAS  Google Scholar 

  15. E. Rubin, A.M. Katz, and C.S. Lieber, Muscle damage produced by chronic alcohol consumption. Am. J. Pathol. 83:499–525 (1976).

    PubMed  CAS  Google Scholar 

  16. T.B. Bolton, Effects of electrogenic sodium pumping in the membrane potential of longitudinal smooth muscle from terminal ileium of guinea pig. J. Physiol. 228:693–712 (1973).

    PubMed  CAS  Google Scholar 

  17. R. Casteels, G. Droogmans, and H. Hendrickx, Active ion transport and resting potential in smooth muscle cells. Phil. Trans. R. Soc. Lond. B. 265:47–56 (1973).

    Article  CAS  Google Scholar 

  18. C.H. Lo, and I.S. Edelman, Effect of triiodothyromine on the synthesis and degradation of renal cortical (Na+ + K+) — adenosine triphosphatase. J. Biol. Chem. 251:7834–7840 (1976).

    PubMed  CAS  Google Scholar 

  19. M.H. Lin, and T. Akera, Increased (Na+, K+)-ATPase concentrations in various tissues of rats caused by thyroid hormone treatment. J. Biol. Chem. 253:723–726 (1978).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1982 Plenum Press, New York

About this chapter

Cite this chapter

Ferguson, E.R., Blachley, J.D., Knochel, J.P. (1982). Experimental Alcoholism Induces Phosphorus and Magnesium Deficiency in Skeletal Muscle. In: Massry, S.G., Letteri, J.M., Ritz, E. (eds) Regulation of Phosphate and Mineral Metabolism. Advances in Experimental Medicine and Biology, vol 151. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-4259-5_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-4259-5_35

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-4261-8

  • Online ISBN: 978-1-4684-4259-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics