Skip to main content

Ionic Conductivity (Including Self-Diffusion)

  • Chapter
Point Defects in Solids

Abstract

Ionic conductivity has become relevant. The recent revival of interest in electric automobiles and solid-state batteries has led to production of high-conductivity solid electrolytes. These new high-conductivity materials, such as RbAg4I5,1,2 have greatly expanded the range over which ionic transport phenomena in solids have been observed. In Fig. 1, we show the conductivity of RbAg4I5 in comparison with the conductivity of the more common alkali and silver halides. We find grouped together on the left-hand, or high-temperature, side of the figure the alkali halide crystals. These materials have been extensively studied.* They are excellent insulators at room temperature and only have significant electrical conductivity within a few hundred degrees of their melting temperatures. Furthermore, in this high-temperature region, the conductivity of the alkali halides is strongly temperature-dependent, the conductivity changes by about 3% per degree Celsius, and the activation energy for conduction is about 2 eV. To the right in Fig. 1, we move to lower temperatures and to materials less well characterized than the alkali halides. The cesium and ammonium halides have ionic conductivities that are about equal in magnitude to the alkali halides but are less strongly temperature-dependent, with activation energies of 1.2 eV. With a conductivity higher by three orders of magnitude, we find silver chloride, with an activation energy for conduction of less than 1 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. B. Owens and G. R. Argue, Science 157, 308 (1967).

    Article  ADS  Google Scholar 

  2. G. G. Bentle, J. Appl. Phys. 39, 4037 (1968).

    Article  ADS  Google Scholar 

  3. L. W. Barr and A. B. Lidiard, “Defects in Ionic Crystals,” in Physical Chemistry—An Advanced Treatise (Academic Press, New York, 1970), Vol. X.

    Google Scholar 

  4. W. Schottky, Z. Phys. Chem. Abt. B 29, 335 (1935).

    Google Scholar 

  5. C. Wagner, Z. Phys. Chem. Abt. B 38, 325 (1938).

    Google Scholar 

  6. N. F. Mott and M. J. Littleton, Trans. Faraday Soc. 34, 485 (1938).

    Article  Google Scholar 

  7. P. G. Shewmon, Diffusion in Solids (McGraw-Hill, New York, 1963).

    Google Scholar 

  8. N. F. Mott and R. W. Gurney, Electronic Processes in Ionic Crystals, 2nd Ed. (Oxford Press, London, 1948).

    Google Scholar 

  9. A. D. LeClaire, “Correlation Effects in Diffusion in Solids,” Chapter 6 in Physical Chemistry—An Advanced Treatise (Academic Press, New York, 1970), Vol. X.

    Google Scholar 

  10. C. Kittel, Elementary Statistical Physics (Wiley, New York, 1958).

    Google Scholar 

  11. J. H. Beaumont and P. W. M. Jacobs, J. Chem. Phys. 45, 1496 (1966).

    Article  ADS  Google Scholar 

  12. A. B. Lidiard, Handbuch der Physik, Vol. 20, p. 246 (1957).

    Article  ADS  Google Scholar 

  13. R. G. Fuller, C. L. Marquardt, M. H. Reilly, and J. C. Wells, Jr., Phys. Rev. 176, 1036 (1968).

    Article  ADS  Google Scholar 

  14. R. G. Fuller and H. B. Rosenstock, J. Phys. Chem. Solids 30, 2105 (1969).

    Article  ADS  Google Scholar 

  15. H. R. Glyde, Rev. Mod. Phys. 39, 373 (1967).

    Article  ADS  Google Scholar 

  16. A. B. Lidiard, Phys. Rev. 94, 29 (1954).

    Article  ADS  Google Scholar 

  17. A. R. Allnatt, “Statistical Mechanics of Point-Defect Interactions in Solids,” in Advances in Chemical Physics (Interscience, 1967), Vol. XI.

    Google Scholar 

  18. R. H. Fowler and E. A. Guggenheim, Statistical Thermodynamics (Cambridge, 1949), Chapter 9.

    Google Scholar 

  19. E. Pitts, Proc. Roy. Soc. London A217, 43 (1953).

    ADS  Google Scholar 

  20. S. Chand ra and J. Rolfe, Can. J. Phys. 48, 397 (1970).

    Article  ADS  Google Scholar 

  21. S. Chand ra and J. Rolfe, Can. J. Phys. 48, 412 (1970).

    Article  ADS  Google Scholar 

  22. V. C. Nelson and R. J. Friauf, J. Phys. Chem. Solids 31, 825 (1970).

    Article  ADS  Google Scholar 

  23. D. K. Dawson and L. W. Barr, Phys. Rev. Letters 19, 844 (1967); Proc. Brit. Ceram. Soc. No. 9, 171 (1967); and to be published.

    Article  ADS  Google Scholar 

  24. P. L. Read and E. Katz, Phys. Rev. Letters 5, 466 (1960).

    Article  ADS  Google Scholar 

  25. D. Mapother, H. N. Crooks, and R. J. Maurer, J. Chem. Phys. 18, 1231 (1950).

    Article  ADS  Google Scholar 

  26. D. Patterson, J. A. Morrison, and G. S. Rose, Phil. Mag. 1, 393 (1956).

    Article  ADS  Google Scholar 

  27. J. Rolfe, Can. J. Phys. 42, 2195 (1964).

    Article  ADS  Google Scholar 

  28. R. G. Fuller and M. H. Reilly, Phys. Rev. Letters 19, 113 (1967).

    Article  ADS  Google Scholar 

  29. G. Arai and J. G. Mullen, Phys. Rev. 143, 663 (1966).

    Article  ADS  Google Scholar 

  30. R. G. Fuller, Bull. Am. Phys. Soc. 15, 384 (1970).

    Google Scholar 

  31. F. Bénière, M. Bénière, and M. Chemla, J. Phys. Chem. Solids 31, 1205 (1970).

    Article  Google Scholar 

  32. E. Laredo and E. Dartyge, J. Chem. Phys. 53, 2214 (1970).

    Article  ADS  Google Scholar 

  33. A. R. Allnatt, P. Pantelis, and S. J. Sime, J. Phys. C: Solid St. Phys. 4, 1778 (1971).

    Article  ADS  Google Scholar 

  34. H. Kanzaki, K. Kido, S. Tamura, and S. Oki, J. Phys. Soc. Japan 20, 2305 (1965).

    Article  ADS  Google Scholar 

  35. I. Boswarva and A. B. Lidiard, Phil. Mag. 16, 805 (1967).

    Article  ADS  Google Scholar 

  36. A. M. Karo and J. R. Hardy, Phys. Rev. B3, 3418 (1971).

    ADS  Google Scholar 

  37. P. D. Schulze and J. R. Hardy (to be published).

    Google Scholar 

  38. F. G. Fumi and M. P. Tosi, J. Phys. Chem. Solids 25, 31 (1964).

    Article  ADS  Google Scholar 

  39. H. Rabin and C. C. Klick, Phys. Rev. 117, 1005 (1960).

    Article  ADS  Google Scholar 

  40. D. Lazarus, D. N. Yoom, and R. N. Jeffery, Z. Naturforsch. 26a, 56 (1971).

    ADS  Google Scholar 

  41. R. G. Fuller and M. H. Reilly, J. Phys. Chem. Solids 30, 457 (1969).

    Article  ADS  Google Scholar 

  42. P. Süptitz and J. Teltow, Phys. Stat. Sol. 23, 9 (1967).

    Article  ADS  Google Scholar 

  43. T. G. Stoebe and P. L. Pratt, Proc. Brit. Ceram. Soc. 9, 171 (1967).

    Google Scholar 

  44. T. G. Stoebe and R. A. Huggins, J. Metals Sci. 1, 117 (1966).

    Article  Google Scholar 

  45. M. Eisenstadt, Phys. Rev. 132, 630 (1963).

    Article  ADS  Google Scholar 

  46. P. J. Harvey and I. M. Hoodless, Phil. Mag. 16, 545 (1967).

    Article  ADS  Google Scholar 

  47. T. M. Herrington and L. A. K. Staveley, J. Phys. Chem. Solids 25, 921 (1964).

    Article  ADS  Google Scholar 

  48. R. G. Fuller and F. W. Patten, J. Phys. Chem. Solids 31, 1539 (1970).

    Article  ADS  Google Scholar 

  49. Y. Adda and J. Philibert, La Diffusion dans des Solids (Presses Universitaires de France, Paris, 1966), Vol. II.

    Google Scholar 

  50. A. L. Laskar and J. Sharma, Bull. Am. Phys. Soc. 15, 390 (1970).

    Google Scholar 

  51. N. L. Peterson and S. J. Rothman, Phys. Rev. 177, 1329 (1969).

    Article  ADS  Google Scholar 

  52. F. Liity, Chapter 3 in Physics of Color Centers, edited by W. B. Fowler (Academic Press, New York, 1968).

    Google Scholar 

  53. W. Franklin, Phys. Rev. 180, 682 (1969).

    Article  ADS  Google Scholar 

  54. D. L. Kirk and P. L. Pratt, Proc. Brit. Ceram. Soc. 9, 215 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1972 Plenum Press, New York

About this chapter

Cite this chapter

Fuller, R.G. (1972). Ionic Conductivity (Including Self-Diffusion). In: Crawford, J.H., Slifkin, L.M. (eds) Point Defects in Solids. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-2970-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-2970-1_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-2972-5

  • Online ISBN: 978-1-4684-2970-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics