Skip to main content

Models for Simultaneous Diffusion and Chemical Reaction of Oxygen within the Intact Red Cell of Whole Blood

  • Chapter

Abstract

A great amount of work has been done in the area of the oxygenation of blood. Studies have been devoted to the diffusion of ligand gases through plasma, hemoglobin solutions, and whole blood. Chemical reaction studies have been made testing various kinetic models. Much work has been done with hemoglobin solutions and millipore membranes to simulate the environment within the red cell. Fleischman (7) has presented a survey of some of the pertinent work done in this field. Of more interest to this discussion are the studies that have involved the simultaneous considerations of oxygen diffusion and chemical reaction with hemoglobin in the intact red cell of whole blood.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. Bird, R.B.; W.E. Stewart; E.N. Lightfoot: Transport Phenomena, John Wiley (1960).

    Google Scholar 

  2. Bloch, E.H.: “A Quantitative Study of the Hemodynamics in the Living Microvascular System,” Am. J. Anat. 110, pp 125–45 (1962).

    Article  PubMed  CAS  Google Scholar 

  3. Churchill, R.Y.: “Complex Variables and Applications,” McGraw-Hill, 2nd Edition, New York, N. Y., (1960).

    Google Scholar 

  4. Collins, R.E.: “Transport of Gases Through Hemoglobin Solutions,” Science 133, pp 1593, (1961).

    Article  PubMed  CAS  Google Scholar 

  5. Enna, T.: ‘Molecular Collision Exchange Transport of O2 by Hemoglobin “ Froc. Nat. Acad. Sci. U.S.A. 51, pp. 247, (1964).

    Article  Google Scholar 

  6. Fatt, I.: R.C. LaForce; “Theory of Oxygen Transport Through Hemoglobin Solutions,” Science 133, pp 1919, (1961).

    Article  PubMed  CAS  Google Scholar 

  7. Fleischman, M. and Hershey, D.: “Simultaneous Diffusion and Chemical Reaction of Oxygen in Whole Blood,” Chemical Engineering Symposium Series, 1970 (in Press)

    Google Scholar 

  8. Forster, R.E.: “Rate of Gas Uptake by Red Cells,” in: Handbook of Physiology, Section 3, Respiration, Vol. 1, Edited by W.O. Fenn and H. Rahn. American Physiological Society, Washington D.C., pp 827–37, (1964).

    Google Scholar 

  9. Gibson, Q.H.; F. Kreuzer; E. Meda; F. Boughton: “The Kinetics of Human Hemoglobin in Solution and in the Red Cell at 37°C,” J. Physiol. (London) 129, pp 65–69, (1955).

    CAS  Google Scholar 

  10. Gibson, Q.H.: “The Kinetics of Reactions Between Hemoglobin and Gases,” Ch. 1 in Progress in Biophysics and Biophysical Chemie, J.A.V. Butler and B. Katz, Eds., Pergammon Press, 1959 ).

    Google Scholar 

  11. Grote, J.; g. Thews: “Die Bedingunger fur die Sauerstoffversorgung des Herzmuskelgewebes ” Pflugers Arch. ges. Physiol. 276, pp 142–165, (1962).

    Article  CAS  Google Scholar 

  12. Hesselberth, J.F.: “Simultaneous Diffusion and Chemical Reaction of Oxygen in Whole Blood in a Wetted-Wall Column,” PhD Thesis, Univ. of Cincinnati, (1968)

    Google Scholar 

  13. Karhan, T.L. and Hershey, D.: “Equilibrium and Diffusion of the 02-Blood System,” A.I. CH. E. Journal, 14, 969–973 (1968).

    Article  Google Scholar 

  14. Kernohan, J.C.: “Kinetics of the Reactions of Two Sheep Hemoglobins with 02 and CO,” J. Physiol. 155, pp 580–88, (1961).

    PubMed  CAS  Google Scholar 

  15. Kreuzer, F.; W.Z. Yahr: “Influence of the Red Cell Membrane on the Diffusion of Oxygen,” J. Appl. Physiol. 15, pp 1117, (1960).

    PubMed  CAS  Google Scholar 

  16. Marx, T.I.; et. al.: “Diffusion of Oxygen into a Film of Whole Blood,” J. Appl. Physiol. 15, pp 1123–9, (1960).

    PubMed  CAS  Google Scholar 

  17. Neale, J.B.: Laboratory Medicine-Hemotology, C. V. Mosby, St. Louis, (1962).

    Google Scholar 

  18. Menke, R.C.: “Models for Simultaneous Diffusion and Chemical Reaction of Oxygen Within the Intact Red Cell of Whole Blood,” PhD Thesis, Univ. of Cincinnati, (1970)

    Google Scholar 

  19. Miller, C.; et. al.: “Mass Transfer of Oxygen into Blood Using a Wetted-Wall Column,” Chemical Engineering in Medicine and Biology, D. Hershey, Editor, Plenum Press, N. Y. 1967.

    Google Scholar 

  20. Mochizuki, M.; J.I. Fukuoka: “The Diffusion of Oxygen Inside the Red Cell,” Japan. J. Physiol. 8, pp 206–24, (1958).

    Article  CAS  Google Scholar 

  21. Moll, W.: “Measurements of Facilitated Diffusion of Oxygen in Red Blood Cells at 37°C,” Pflugers Arch. 305, pp 269–278, (1969).

    Article  PubMed  CAS  Google Scholar 

  22. Moll, W.: “The Influence of Hemoglobin Diffusion on Oxygen Uptake and Release by Red Cells,” Respiration Physiology 6, pp 1–15, (1968/69)

    Google Scholar 

  23. Perutz, M.F.: “Submicroscopic Structure of the Red Cell,” Nature 161, pp 204, (1948).

    Article  PubMed  CAS  Google Scholar 

  24. Peters, J.P.; D.D. van Slyke: Quantitative Clinical Chemistry, Williams and Wilkins, Baltimore, Vol. II, (1932).

    Google Scholar 

  25. Roughton, F.J.W.: “Diffusion and Chemical Reaction velocity as Joint Factors in Determining the Rate of Uptake of Oxygen and Carbon Monoxide by the Red Blood Corpuscle,” Proc. Roy. Soc. B 111, pp 1–36, (1932).

    Article  CAS  Google Scholar 

  26. Roughton, F.J.W.: “Diffusion and Simultaneous Chemical Reaction Velocity in Hemoglobin Solutions and Red Cell Suspensions,” Ch. 2 in reference 10.

    Google Scholar 

  27. Sendroy, J.; R.T. Dillon; D.D. van Slyke: “Studies of Gas and Electrolyte Equilibrium in Blood,” J. Biol. Chem. 105, pp 597–632, (1934).

    CAS  Google Scholar 

  28. Spiegel, M.R.: Theory and Problems of Laplace Transforms, Schaum’s Outline. Series, Schaum Pub. Co. N. Y., (1965).

    Google Scholar 

  29. Taylor, A.E.: Advanced Calculus, pp 51–52, Ginn and Co., New York, N. Y., (1955).

    Google Scholar 

  30. Taylor, A.E.: Ibid. pp 118–120.

    Google Scholar 

  31. Taylor, A.E.: Ibid. pp 619.

    Google Scholar 

  32. Wang, J.H.: “Transport of Oxygen Through Hemoglobin Solutions,” Science 133, pp 1770, (1961).

    Article  PubMed  CAS  Google Scholar 

  33. Weissman, M.H.; L.F. Mockros: “Oxygen Transfer to Blood Flowing in Round Tubes,” 19th Annual. Conference on Engineering in Medicine and Biology, San Francisco, (1966).

    Google Scholar 

  34. Whittam, R.: Transport and Diffusion in Red Blood Cells, Williams and Wilkins, Baltimore, (1964).

    Google Scholar 

  35. Wintrobe, M.M.: Clinical Hematology, Lea and Febger, Philadelphia, (1961).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1970 Plenum Press, New York

About this chapter

Cite this chapter

Menke, R.C., Hershey, D. (1970). Models for Simultaneous Diffusion and Chemical Reaction of Oxygen within the Intact Red Cell of Whole Blood. In: Hershey, D. (eds) Blood Oxygenation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1857-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1857-6_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1859-0

  • Online ISBN: 978-1-4684-1857-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics