Skip to main content

Treatment of Painful Diabetic Polyneuropathy with Mixed Gangliosides

  • Chapter
Book cover Ganglioside Structure, Function, and Biomedical Potential

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 174))

Abstract

Peripheral neuropathy is a common complication of diabetes mellitus1 with an incidence of from 15% to 60%.2,3,4 While estimates vary, as many as 20% of these patients may suffer from considerable painful discomfort.5 Control of blood glucose has been demonstrated to improve motor nerve conduction in diabetic rats and humans,7,8 though this may not improve peripheral nerve function. Treatment of painful diabetic neuropathy has had variable success, and as an attempt to deal with this serious problem, this study was initiated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. J. Dyck, The causes, classification and treatment of peripheral neuropathy, New Engl. J. Med. 307:283 (1982).

    Article  PubMed  CAS  Google Scholar 

  2. P. K. Thomas and S. G. Eliasson, Diabetic neuropathy, in: “Peripheral Neuropathy,” Dyck, Thomas and Lambert, eds., W. B. Saunders, (1972).

    Google Scholar 

  3. W. G. Oakley, D. A. Pyke, R. B. Tattersall, and D. J. Watkins, Longterm diabetes. A clinical study of 92 patients after 40 years, Quarterly J. Med. 196:145 (1974).

    Google Scholar 

  4. A. T. Paz-Guevera, T. H. Hsu, and P. White, Juvenile diabetes after 40 years, Diabetes 24:559 (1975).

    Article  Google Scholar 

  5. J. Pirart, Diabetes mellitus and its degenerative complications, Diabetes Care 1:168 (1978).

    Google Scholar 

  6. A. Winegrad and D. A. Greene, Diabetic polyneuropathy, New Engl. J. Med. 295:1416 (1976).

    Article  PubMed  CAS  Google Scholar 

  7. R. Graf, J. B. Halter, M. A. Pfeifer, E. Harlar, F. Brozovich, and D. Porte, Glycemic control and nerve conduction abnormalities in non-insulin dependent diabetic subjects, Ann. Int. Med. 94:307 (1981).

    PubMed  CAS  Google Scholar 

  8. E. Harlar, R. Graf, J. Halter, F. Brozovich and T. Soine, Diabetic neuropathy: A clinical, laboratory and electro-diagnostic study, Arch. Phys. Med. Rehab. 63:298 (1982).

    Google Scholar 

  9. F. J. Service, J. Daube, P. C. O’Brien, B. R. Zimmerman, C. J. Swanson, M. D. Brennan, and P. J. Dyck, Effect of blood glucose control on peripheral nerve function in diabetic patients, Mayo Clin. Proc. 58:283 (1983).

    PubMed  CAS  Google Scholar 

  10. P. S. Spencer, M. I. Sabris, H. Schaumberg, and C. L. Moore, Does a defect of energy metabolism in the nerve fibers underlie axonal degeneration in polyneuropathies? Ann. Neurol. 5:501 (1979).

    Article  PubMed  CAS  Google Scholar 

  11. A. Winegrad, D. Simmons, and D. B. Martin, Has one diabetic complication been explained? Editorial, New Eng. J. Med. 308:152 (1983).

    Article  CAS  Google Scholar 

  12. A. A. F. Sima, Structural and functional characterization of the neuropathy in the spontaneously diabetic BB-Wistar rat, in: “Excerpta Medica,” Y. Goto, A. Horuchi, and K. Kogue, eds., Amsterdam, (1982).

    Google Scholar 

  13. P. J. Dyck, W. B. Sherman, L. M. Hallcher, J. Service, P. O’Brien, L. Grina, P. Palumbo, and C. Swanson, Human diabetic endoneural sorbitol, fructose, and myoinositol related to sural nerve morphometry, Ann. Neurol. 8:590 (1980).

    Article  PubMed  CAS  Google Scholar 

  14. G. Gregerson, B. Bertelsen, H. Harbo, E. Larsen, J. Rud Andersen, A. Helles, M. Schmiegelow, J. Just Christensen, Oral supplementation of myoinositol: Effects on peripheral nerve functions in human diabetics and on concentration in plasma, erythrocytes, urine and muscle tissue in human diabetics and normals, Acta Neurol. Scand. 67:164 (1983).

    Article  Google Scholar 

  15. R. G. Judzewitsch, J. B. Jaspan, K. S. Polonsky, C. R. Weinberg, J. B. Halter, E. Halar, M. A. Pfeifer, C. Vukadinovic, L. Bernstein, M. Schneider, K.-Y. Liang, K. H. Gabbay, A. H. Rubenstein, D. Porte, Jr., Aldose reductase inhibition improves nerve conduction velocity in diabetic patients, New Engl. J. Med. 308:119 (1983).

    Article  PubMed  CAS  Google Scholar 

  16. M. Brown, J. R. Martin, A. K. Asbury, Painful diabetic neuropathy, Arch. Neurol. 33:164 (1976).

    Article  PubMed  CAS  Google Scholar 

  17. F. Roisen, H. Bartfeld, R. Nagele, and G. Yorke, Ganglioside stimulation of axonal sprouting in vitro, Science 214:577 (1981).

    Article  PubMed  CAS  Google Scholar 

  18. A. Gorio, G. Carmignoto, L. Facci, M. Finesso, Motor nerve sprouting induced by ganglioside treatment. Possible implications for gangliosides on neuronal growth, Brain Res. 197:236 (1980).

    Article  PubMed  CAS  Google Scholar 

  19. S. Ando, N.-C. Chang, and R. K. Yu, High performance thin-layer chromatography and densitometric determination of brain ganglioside compositions of several species, Anal. Biochem. 89:437 (1978).

    Article  PubMed  CAS  Google Scholar 

  20. P. H. Fishman, J. Moss and V. C. Manganiello, Synthesis and uptake of gangliosides by choleragen responsive human fibroblasts, Biochem. 16:1871 (1977).

    Article  CAS  Google Scholar 

  21. P. H. Fishman, R. O. Brady, and S. A. Aronson, A comparison of membrane glycoconjugates from mouse cells transformed by murine and primate RNA sarcoma virus, Biochem. 15:201 (1976).

    Article  CAS  Google Scholar 

  22. F. Roisen, H. Bartfeld, and M. Rapport, Ganglioside mediation of in vitro neuronal maturation, in: “Gangliosides in Neurological and Neuromuscular Function, Development and Repair,” M. M. Rapport and A. Gorio, eds., Raven Press, New York, (1981).

    Google Scholar 

  23. M. Kalra and J. DePalma, Ganglioside induced acceleration of axonal transport following nerve crush injury in the rat, Neuroscience Letters 34:1 (1982).

    Article  Google Scholar 

  24. G. Tettamanti, Ganglioside and receptor activity (Abstract), Muscle and Nerve Nov. (1978).

    Google Scholar 

  25. G. Pozza, V. Saibene, G. Comi, and N. Canal, The effect of ganglioside administration in human diabetic peripheral neuropathy, in: “Gangliosides in Neurological and Neuromuscular Function, Development and Repair,” M. M. Rapport and A. Gorio, eds., Raven Press, New York (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Plenum Press, New York

About this chapter

Cite this chapter

Naarden, A., Davidson, J., Harris, L., Moore, J., DeFelice, S. (1984). Treatment of Painful Diabetic Polyneuropathy with Mixed Gangliosides. In: Ledeen, R.W., Yu, R.K., Rapport, M.M., Suzuki, K. (eds) Ganglioside Structure, Function, and Biomedical Potential. Advances in Experimental Medicine and Biology, vol 174. Springer, Boston, MA. https://doi.org/10.1007/978-1-4684-1200-0_49

Download citation

  • DOI: https://doi.org/10.1007/978-1-4684-1200-0_49

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4684-1202-4

  • Online ISBN: 978-1-4684-1200-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics