Skip to main content

Domperidone as a Tool to Assess the Role of Dopamine within Carotid Body Chemoreception

  • Chapter
Frontiers in Arterial Chemoreception

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 410))

Abstract

The carotid bodies are composite receptors, i.e. hypoxia apparently acts upon glomus cells which are synaptically apposed to the sensory endings of primary afferent neurons, responsible for conveying the information to the medullary centers. Considerable effort has been directed to determine the transmitter(s) involved in signal transference between glomus cells and chemosensory nerve terminals. Dopamine is the putative transmitter that has received more attention, because of the following observations: i) glomus cells are characterized by their abundance in dense-core granules and strong formaldehyde-induced fluorescence, indicative of a high concentration of catecholamines (see Hess, 1975); ii) dopamine is the prevalent catecholamine in the carotid body of most species studied (see Fidone et al, 1983); iii) glomus cells possess the enzymes required for dopamine synthesis as well the transporter mechanisms for uptake of dopamine and its precursors (see Eyzaguirre & Zapata, 1984); iv) the dopamine content of the rat carotid body in situ is reduced in direct proportion to the severity and duration of hypoxia (Hellström et al, 1976; Hanbauer & Hellström, 1978); v) the dopamine content of the rabbit carotid body in vitro is reduced by hypoxic superfusates (Leitner, 1993); and vi) hypoxia induces dopamine release from rabbit and cat carotid bodies superfused in vitro (Fidone et al, 1982; Rigual et al, 1986; see also Zapata et al, 1996). These observations led to the proposal that dopamine may serve as the excitatory transmitter between glomus cells and chemosensory nerve terminals (see Gonzalez et al, 1994).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bisgard GE, Mitchell RA & Herbert DA (1979) Effects of dopamine, norepinephrine, and 5-hydroxytryptamine on the carotid body of the dog. Respir Physiol 37: 61–80

    Article  PubMed  CAS  Google Scholar 

  • Czyzyk-Krzeska MF, Lawson EE & Millhorn DE (1992) Expression of D2 dopamine receptor mRNA in the arterial chemoreceptor afferent pathway. J Auton Nerv Syst 41: 31–39

    Article  PubMed  CAS  Google Scholar 

  • Dinger B, Gonzalez C, Yoshizaki K & Fidone S (1981) [3H] Spiroperidol binding in normal and denervated carotid bodies. Neurosci Lett 21: 51–55

    Article  PubMed  CAS  Google Scholar 

  • Docherty RJ & McQueen DS (1978) Inhibitory action of dopamine on cat carotid chemoreceptors. J Physiol, London 279: 425–436

    CAS  Google Scholar 

  • Docherty RJ & McQueen DS (1979) The effects of acetylcholine and dopamine on carotid chemosensory activity in the rabbit. J Physiol, London 288: 411–423

    CAS  Google Scholar 

  • Eyzaguirre C & Zapata P (1984) Perspectives in carotid body research. J Appl Physiol 57: 931–957

    PubMed  CAS  Google Scholar 

  • Fidone S, Gonzalez C & Yoshizaki K (1982) Effects of low oxygen on the release of dopamine from the rabbit carotid body in vitro. J Physiol, London 333: 93–110

    CAS  Google Scholar 

  • Fidone SJ, Stensaas LJ & Zapata P (1983) Sites of synthesis, storage, release and recognition of biogenic amines in carotid bodies. In: Acker H & O’Regan RG (eds) Physiology of the Peripheral Arterial Chemoreceptors. Amsterdam: Elsevier. pp 21–44

    Google Scholar 

  • Folgering H, Ponte J & Sadig T (1982) Adrenergic mechanisms and chemoreception in the carotid body of the cat and the rabbit. J Physiol, London 325: 1–21

    CAS  Google Scholar 

  • Gauda EB, Shirahata M & Fitzgerald RS (1994) D2-dopamine receptor mRNA in the carotid body and petrosal ganglia in the developing cat. Adv Exp Med Biol 360: 317–319

    Article  PubMed  CAS  Google Scholar 

  • Goldman WF & Eyzaguirre C (1984) The effect of dopamine on glomus cell membranes in the rabbit. Brain Res 321:337–340

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez C, Almaraz L, Obeso A & Rigual R (1994) Carotid body chemoreceptors: from natural stimuli to sensory discharges. Physiol Rev 74: 829–898

    PubMed  CAS  Google Scholar 

  • Hanbauer I & Hellström S (1978) The regulation of dopamine and noradrenaline in the rat carotid body and its modification by denervation and by hypoxia. J Physiol, London 282: 21–34

    CAS  Google Scholar 

  • Hellström S, Hanbauer I & Costa E (1976) Selective decrease of dopamine content in rat carotid body during exposure to hypoxic conditions. Brain Res 118: 352–355

    Article  PubMed  Google Scholar 

  • Hess A (1975) The significance of the ultrastructure of the rat carotid body in structure and function of chemoreceptors. In: Purves MJ (ed) The Peripheral Arterial Chemoreceptors. London: Cambridge Univ Press. pp 51–73

    Google Scholar 

  • Hsiao C, Lahiri S & Mokashi A (1989) Peripheral and central dopamine receptors in respiratory control. Respir Physiol 76: 327–336

    Article  PubMed  CAS  Google Scholar 

  • Iturriaga R, Larrain C & Zapata P (1994) Effects of dopaminergic blockade upon carotid chemosensory activity and its hypoxia-induced excitation. Brain Res 663: 145–154

    Article  PubMed  CAS  Google Scholar 

  • Kressin NA, Nielsen AM, Laravuso R & Bisgard GE (1986) Domperidone-induced potentiation of ventilatory responses in awake goats. Respir Physiol 65: 169–180

    Article  PubMed  CAS  Google Scholar 

  • Laduron PM & Leysen JE (1979) Domperidone, a specific in vitro dopamine antagonist, devoid of in vivo central dopaminergic activity. Biochem Pharmacol 28: 2161–2165

    Article  PubMed  CAS  Google Scholar 

  • Lahiri S & Nishino T (1980) Inhibitory and excitatory effects of dopamine on carotid chemoreceptors. Neurosci Lett 20: 313–318

    Article  PubMed  CAS  Google Scholar 

  • Lahiri S, Hsiao C, Zhang R, Mokashi A & Nishino T (1985) Peripheral chemoreceptors in respiratory oscillations. J Appl Physiol 58: 1901–1908

    Article  PubMed  CAS  Google Scholar 

  • Leitner L-M (1993) Dopamine metabolism in the rabbit carotid body in vitro: effect of hypoxia and hypercapnia. Adv Exp Med Biol 337: 183–190

    Article  PubMed  CAS  Google Scholar 

  • Llados F & Zapata P (1978) Effects of dopamine analogues and antagonists on carotid body chemosensors in situ. J Physiol, London 274: 487–499

    CAS  Google Scholar 

  • Matsumoto S, Nakajima T, Uchida T, Ozawa H & Uchiyama J (1982) Effects of sodium cyanide, dopamine and acetylcholine on the resting membrane potential of glomus cells in the rabbit. Brain Res 239: 674–678

    Article  PubMed  CAS  Google Scholar 

  • McQueen DS (1984) Effects of selective dopamine receptor agonists and antagonists on carotid body chemorecep-tor activity. In: Pallot DJ (ed) The Peripheral Arterial Chemoreceptors. London: Croom Helm. pp 325–333

    Google Scholar 

  • Mir AK, McQueen DS, Pallot DJ & Nahorski SR (1984) Direct biochemical and neuropharmacological identification of dopamine D2-receptors in the rabbit carotid body. Brain Res 291: 273–283

    Article  PubMed  CAS  Google Scholar 

  • Monti-Bloch L & Eyzaguirre C (1980) A comparative physiological and pharmacological study of cat and rabbit carotid body chemoreceptors. Brain Res 193: 449–470

    Article  PubMed  CAS  Google Scholar 

  • Nishi K (1977) A pharmacologic study on a possible inhibitory role of dopamine in the cat carotid body chemore-ceptor. In: Acker H, Fidone S, Pallot D, Eyzaguirre C, Lübbers DW, Torrance RW (eds) Chemoreception in the Carotid Body. Berlin: Springer-Verlag. pp 145–151

    Chapter  Google Scholar 

  • Rigual R, Gonzalez E, Gonzalez C & Fidone S (1986) Synthesis and release of catecholamines by the cat carotid body in vitro: effects of hypoxic stimulation. Brain Res 374: 101–109

    Article  PubMed  CAS  Google Scholar 

  • Roumy M, Armengaud C, Ruckebusch M, Sutra JF & Leitner L-M (1988) Fate of the catecholamine stores in the rabbit carotid body superfused in vitro. Pflügers Arch — Eur J Physiol 411: 436–441

    Article  CAS  Google Scholar 

  • Sampson SR, Aminoff MJ, Jaffe RA & Vidruk EH (1976) Analysis of inhibitory effect of dopamine on carotid body chemoreceptors in cats. Am J Physiol 230: 1494–1498

    PubMed  CAS  Google Scholar 

  • Schamel A & Verna A (1993) Localization of dopamine D2 receptor mRNA in the rabbit carotid body and petrosal ganglion by in situ hybridization. Adv Exp Med Biol 337: 85–91

    Article  PubMed  CAS  Google Scholar 

  • Zapata P (1975) Effects of dopamine on carotid chemo-and baroreceptors in vitro. J Physiol, London 244: 235–251

    CAS  Google Scholar 

  • Zapata P & Torrealba F (1984) Blockade of dopamine-induced chemosensory inhibition by domperidone. Neurosci Lett 51: 359–364

    Article  PubMed  CAS  Google Scholar 

  • Zapata P, Serani A & Lavados M (1983) Inhibition in carotid body chemoreceptors mediated by D-2 dopamino-ceptors: antagonism by benzamides. Neurosci Lett 42: 179–184

    Article  PubMed  CAS  Google Scholar 

  • Zapata P, Iturriaga R & Alcayaga J (1996) Dopamine efflux from the carotid body during hypoxic stimulation. Adv Exp Med Biol 410: 261–266

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Zapata, P., Iturriaga, R., Larraín, C. (1996). Domperidone as a Tool to Assess the Role of Dopamine within Carotid Body Chemoreception. In: Zapata, P., Eyzaguirre, C., Torrance, R.W. (eds) Frontiers in Arterial Chemoreception. Advances in Experimental Medicine and Biology, vol 410. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5891-0_44

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5891-0_44

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7702-3

  • Online ISBN: 978-1-4615-5891-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics