Skip to main content

Prolegomena

Chemoreception Upstream of Transmitters

  • Chapter
Frontiers in Arterial Chemoreception

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 410))

Abstract

This essay will discuss the early stages in the setting up of nerve impulses in arterial chemoreceptors by respiratory gases, an excess of CO2 and a deficit of O2. At that stage of the process, the dimensions used in the discussion are usually those of the physiology of respiration, of PO2, PCO2 and (H+), rather than those of the biophysics of excitable membranes, and the equations are those of Henderson and Hasselbalch rather than those of Hodgkin and Huxley. A host of reviews (e.g., Peers & Buckler, 1995; Gonzalez et al, 1995; very recently) discusses recent advances in the study of the later, biophysical, stages of excitation. This essay may serve as a preface to the reviews and to some of the papers in this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Biscoe TJ (1971) Carotid body: structure and function. Physiol Rev 51: 427–495

    Google Scholar 

  • Black AMS, McCloskey DI & Torrance RW (1971) The responses of carotid body chemoreceptors in the cat to sudden changes in hypercapnic and hypoxic stimuli. Respir Physiol 13: 36–49

    Article  PubMed  CAS  Google Scholar 

  • Black AMS & Torrance RW (1971) Respiratory oscillations in chemoreceptor discharge in the control of breathing. Respir Physiol 13: 221–237

    Article  PubMed  CAS  Google Scholar 

  • Cunningham DJC, Robbins PA & Wolff CB (1986) Integration of respiratory responses to changes in alveolar partial pressures of CO2 and O2 in arterial pH. In: Handbook of Physiology, sect 3: Respiratory System, vol 2: Control of Breathing (Cherniack NS & Widdicombe JG, eds). Bethesda, Md: Amer Physiol Soc. pp 475–528

    Google Scholar 

  • de Castro F & Rubio M (1968) The anatomy and innervation of the blood vessels of the carotid body and the role of chemoreceptive reactions in the autoregulation of the blood flow. In: Torrance RW (ed) Arterial Chemoreceptors. Oxford: Blackwell. pp 267–277

    Google Scholar 

  • Dejours P (1966) Respiration. New York: Oxford University Press

    Google Scholar 

  • de Kock LL & Dunn AEG (1966) An electron microscopic study of the carotid body. Acta Anat 64: 163–173

    Article  Google Scholar 

  • Dinger BG, Stensaas LJ & Fidone SJ (1984) Chemosensory end-organs re-innervated by normal and foreign nerves. In: Pallot DJ (ed) The Peripheral Arterial Chemoreceptors. London: Croom Helm. pp 225–234

    Google Scholar 

  • Donnelly DF (1995) Modulation of glomus cell membrane currents of intact rat carotid body. J Physiol, London 489: 677–688

    CAS  Google Scholar 

  • Douglas CG, Haidane JS, Henderson Y & Schneider EC (1913) Physiological observations made on Pike’s Peak, Colorado, with special reference to adaptation to low barometric pressures. Phil Trans Roy Soc, London 203B: 185–318

    Google Scholar 

  • Douglas WW (1952) The effect of a ganglion-blocking drug, hexamethonium, on the response of the cat’s carotid body to various stimuli. J Physiol, London 118: 373–383

    CAS  Google Scholar 

  • Euler US von, Liljestrand G & Zotterman Y (1939) The excitation mechanism of the chemoreceptors of the carotid body. Skand Arch Physiol 83: 132–152

    Article  Google Scholar 

  • Eyzaguirre C & Kuffler SW (1955) Processes of excitation in the dendrites and in the soma of single, isolated nerve cells of the lobster and crayfish. J Gen Physiol 39: 87–119

    Article  PubMed  CAS  Google Scholar 

  • Eyzaguirre C & Zapata P (1968) A discussion of possible transmitter or generator substances in carotid body chemoreceptors. In: Torrance RW (ed) Arterial Chemoreceptors. Oxford: Blackwell. pp 213–251

    Google Scholar 

  • FitzGerald MP (1913) The changes in the breathing and the blood at various high altitudes. Phil Trans Roy Soc, London 203B: 351–371

    Google Scholar 

  • Fitzgerald RS & Parks C (1971) Effect of hypoxia on carotid chemoreceptor response to carbon dioxide in cats. Respir Physiol 12: 218–229

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez C, Lopez-Lopez JR, Obeso A, Perez-Garcia MT & Rocher A (1995) Cellular mechanisms of oxygen chemoreception in the carotid body. Respir Physiol 102: 137–147

    Article  PubMed  CAS  Google Scholar 

  • Goodman NW (1974) Some observations on the homogeneity of response of single chemoreceptor fibres. Respir Physiol 20: 271–281

    Article  PubMed  CAS  Google Scholar 

  • Goodman NW & McCloskey DI (1972) Intracellular potentials in the carotid body. Brain Res 39: 501–504

    Article  PubMed  CAS  Google Scholar 

  • Goodman NW, Nail BS & Torrance RW (1974) Oscillations in the discharge of single carotid chemoreceptor fibres of the cat. Respir Physiol 20: 251–269

    Article  PubMed  CAS  Google Scholar 

  • Gray BA (1971) On the speed of the carotid body response in relation to CO2 hydration. Respir Physiol 11: 235–246

    Article  PubMed  CAS  Google Scholar 

  • Hanson MA, Nye PCG & Torrance RW (1981) The exodus of an extracellular bicarbonate theory of chemoreception and the genesis of an intracellular one. In: Belmonte C, Pallot DJ, Acker H & Fidone S (eds) Arterial Chemoreceptors. Leicester: Leicester University Press. pp 403–416

    Google Scholar 

  • Hayashida Y, Koyano H & Eyzaguirre C (1980) An intracellular study of chemosensory fibres and endings. J Neurophysiol 44: 1077–1088

    PubMed  CAS  Google Scholar 

  • Hayes MW (1974) The mechanism of initiation of impulses in arterial chemoreceptors. MSc Thesis. Oxford University

    Google Scholar 

  • Hayes MW, Maini BK & Torrance RW (1976) Reduction of the responses of carotid chemoreceptors by acetazo-lamide. In: Paintal AS (ed) Morphology and Mechanisms of Chemoreceptors. Delhi: Vallabhbhai Patel Chest Institute. pp 36–45

    Google Scholar 

  • Hess A & Zapata P (1972) Innervation of the cat carotid body: normal and experimental studies. Fed Proc 31: 1365–1382

    PubMed  CAS  Google Scholar 

  • Heymans C & Neil E (1958) Reflexogenic Areas of the Cardiovascular System. London: Churchill

    Google Scholar 

  • Hodgkin AL (1948) The local electric changes associated with repetitive action in a non-medullated axon. J Physiol, London 107: 165–181

    CAS  Google Scholar 

  • Iturriaga R (1993) Carotid body chemoreception: the importance of CO2-HCO3 and carbonic anhydrase. Biol Res 26:319–329

    Article  PubMed  CAS  Google Scholar 

  • Kumar P (1986) Oscillations in the discharge of arterial chemoreceptors: their origin and some reflex effects. D Phil Thesis, Oxford University

    Google Scholar 

  • Kumar P, Nye PCG & Torrance RW (1988) Do oxygen tension variations contribute to the respiratory oscillations of chemoreceptor discharge in the cat? J Physiol, London 395: 531–552

    CAS  Google Scholar 

  • Kumar P, Nye PCG & Torrance RW (1994) Proportional sensitivity of arterial chemoreceptors to CO2. Adv Exp Med Biol 360: 237–239

    Article  PubMed  CAS  Google Scholar 

  • Lee KD & Mattenheimer H (1964) The biochemistry of the carotid body. Enzymol Biol Clin 4: 199–216

    CAS  Google Scholar 

  • Lloyd BB, Jukes MGM & Cunningham DJC (1958) The relation between alveolar oxygen pressure and the respiratory response to carbon dioxide in man. Quart J Exp Physiol 43: 214–227

    PubMed  CAS  Google Scholar 

  • Martin AR & Pilar G (1963) Dual mode of synaptic transmission in the avian ciliary ganglion. J Physiol, London 168:443–463

    CAS  Google Scholar 

  • Nye PCG & Marsh J (1982) Ventilation and carotid chemoreceptor discharge during venous CO2 loading via the gut. Respir Physiol 50: 335–350

    Article  PubMed  CAS  Google Scholar 

  • Paintal S ( 1967) Mechanism of stimulation of aortic chemoreceptors by natural stimuli and chemical substances. J Physiol, London 189: 63–84

    CAS  Google Scholar 

  • Paterson DJ & Nye PCG (1994) Reflexes arising from the arterial chemoreceptors. Adv Exp Med Biol 360: 71–86

    Article  PubMed  CAS  Google Scholar 

  • Peers C & Buckler KJ (1995) Transduction of chemostimuli by the Type I carotid body cell. J Membr Biol 144: 1–9

    PubMed  CAS  Google Scholar 

  • Silk N (1967) Mechanism of excitation of chemoreceptors. B Sc Thesis. Oxford University

    Google Scholar 

  • Stein RB (1968) Some implications of the variability in chemoreceptor discharge. In: Torrance RW (ed) Arterial Chemoreceptors. Oxford: Blackwell. pp 205–212

    Google Scholar 

  • Swanson GD & Bellville JW (1974) Hypoxic-hypercapnic interactions in human respiratory control. J Appl Physiol 36: 480–487

    PubMed  CAS  Google Scholar 

  • Torrance RW (1976) A new version of the acid receptor hypothesis of carotid chemoreceptors. In: Paintal AS (ed) Morphology and Mechanisms of Chemoreceptors. Delhi: Vallabhbhai Patel Chest Institute. pp.131–137

    Google Scholar 

  • Torrance RW (1977) Convergence of stimuli in arterial chemoreceptors. Adv Exp Med Biol 78: 203–207

    Article  PubMed  CAS  Google Scholar 

  • Torrance RW, Bartels EM & McLaren AJ (1993) Update on the bicarbonate hypothesis. Adv Exp Med Biol 337: 241–250

    Article  PubMed  CAS  Google Scholar 

  • Torrance RW, Iturriaga R & Zapata P (1994) Effect of expiratory duration on chemoreceptor oscillations. Adv Exp Med Biol 360: 241–243

    Article  PubMed  CAS  Google Scholar 

  • Whalen WJ & Nair P (1977) Tissue PO2 in the cat carotid body and related functions. Adv Exp Med Biol 78: 225–232

    Article  PubMed  CAS  Google Scholar 

  • Wolff CB (1992) The physiological control of respiration. Molec Aspects Med 13: 445–567 (Fig 6)

    Article  CAS  Google Scholar 

  • Woods RI (1975) Penetration of horseradish peroxidase between all elements of the carotid body. In: Purves M J (ed) The Peripheral Arterial Chemoreceptors. London: Cambridge University Press. pp 195–205

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media New York

About this chapter

Cite this chapter

Torrance, R.W. (1996). Prolegomena. In: Zapata, P., Eyzaguirre, C., Torrance, R.W. (eds) Frontiers in Arterial Chemoreception. Advances in Experimental Medicine and Biology, vol 410. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5891-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5891-0_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7702-3

  • Online ISBN: 978-1-4615-5891-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics