Skip to main content

Effect of Perfluorochemical Emulsion on Hemorheology and Shear Induced Blood Trauma

Possible Mechanisms and Future Applications

  • Chapter
Oxygen Transport to Tissue XVIII

Abstract

Blood trauma has been recognized as one of the key problems associated with assisted circulation. Indeed, the main requirement for improved heart-assist devices is the reduction of blood cell damage. The extremely high shear forces and prolonged contact between blood and foreign surfaces can cause mechanical destruction of erythrocytes (hemolysis), activation of platelets, changes in mechanical properties of erythrocytes1 and thus reduction of oxygen delivery. Even low level of hemolysis, in turn, drastically increases RBC aggregation at low shear conditions2. Additionally, plasma free hemoglobin can have a toxic effect on the cardiovascular system, probably because of hemoglobin vasoactivity, mediated by its property to bind nitric oxide (NO), an endothelium-derived relaxing factor3. Alternatively, NO might be destroyed by O2 radicals formed in the presence of hemoglobin3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schima H., Müller M.R., Papantonis D., Schlusche C., Huber L., Scmidt C., Trubel W., Thoma H., Losert U., and Wolner E. Minimization of hemolysis in centrifugal blood pumps: influence of different geometries. The International Journal of Artificial Organs 16, 7, 521–529, 1993.

    PubMed  CAS  Google Scholar 

  2. Seiyama A., Suzuki Y., Tateshi N., and Maeda N. Viscous properties of partially hemolyzed erythrocyte suspension. Biorheology 28, 452, 1991

    Google Scholar 

  3. Winslow R.M., Vandergriff K.D., and Motterlini R. Mechanism of hemoglobin toxicity. Annals of Biomedical Engineering 21, Suppl.1, 16, 1993.

    Google Scholar 

  4. Kormos R.L., Borovetz H.S., Griffith B.P., and Hung T.-C. Rheologic Abnormalities in Patient with the Jarvik-7 Total Artificial Heart. Transaction of American Society for Artificial Internal Organs 10(3), 413–417, 1987

    Google Scholar 

  5. Hung T.-C., Butter D.B., Yie C.L., Sun Z., Borovetz H.S., Kormos R.L., Griffith B.P. and Hardesty R.L. Interim use of Jarvik-7 and Novacor artificial heart: blood rheology and transient ischemic attacks (TIA’s). Biorheology 28, 9–25, 1991.

    PubMed  CAS  Google Scholar 

  6. Kamada T., McMillan D.E., Sternliev J.J., Bjork V.O., and Otsuji S. Erythrocyte crenation induced by free fatty acids in patients undergoing extracorporeal circulation. Lancet 2(8563), 818–821, 1987.

    Article  PubMed  CAS  Google Scholar 

  7. Frattini P.L., Wachter C., Hung T.C., Kormos R.L., Griffith B.P., and Borovetz H.S. Erythrocyte defor-mability in patients on left ventricular assist systems. Transactions of the American Society for Artificial Internal Organs 35, 3, 733–735, 1989.

    Article  CAS  Google Scholar 

  8. Yarborough K.A., Mockros L.F., and Lewis F.J. Hydrodynamic hemolysis in extracorporeal machines. Journal of Thoracic and Cardiovascular Surgery 52, 4, 550–557, 1966.

    PubMed  CAS  Google Scholar 

  9. Oku T., Harasaki H., Smith W., and Nosé, Y. Hemolysis. A comparative Study of Four Nonpulsatile Pumps. Transactions of the American Society for Artificial Internal Organs 34, 500–504, 1988.

    CAS  Google Scholar 

  10. Qian KUN-XI. Experience in reducing the hemolysis of an impeller assist heart. Transactions of the American Society for Artificial Internal Organs 35, 46–53, 1989.

    Google Scholar 

  11. Qian KUN-XI. Haemodynamic approach to reducing thrombosis and haemolysis in an impeller pump. Journal of Biomedical Engineering 12, 533–535, 1990.

    Article  Google Scholar 

  12. Wurrsinger L.J. and Opitz R. (1991). Hematological principles of hemolysis and thrombosis with special reference to rotary blood pumps. Proceeding of the International Workshop on Rotary Blood Pumps. Edited by H. Schima, H. Thoma, G. Weiselthaler, and E. Wolner, Vienna, ISBN 3-900928-00-2, pp. 19–25.

    Google Scholar 

  13. Schima H., Schlusche C., Jeremejev B.V., Schor I., Geihseder, Müller M.R., and Losert U. Influence of centrifugal blood pump on the elasticity of erythrocytes. Transactions of the American Society for Artificial Internal Organs 37, 658–661, 1991.

    CAS  Google Scholar 

  14. Sugiki M., Murakami A., Koton K., Takadou S., and Ueyama T. Effect of eicosapentaenoic acid on erythro-aggregometry in left heart bypass by centrifugal pump. Japanese Journal of Artificial Organs 21(2), 575–580, 1992.

    Google Scholar 

  15. Sugiki M., Murakami A., Koton K., Ueyama T., Takadou S., Watanabe G., and Misaki T. Effect of eicosapentaenoic acid on erythrocyte aggregation in left heart bypass by centrifugal pump. Artificial Organs 17(6), 561, 1993.

    Google Scholar 

  16. Geyer R.P. Perfluorochemicals as oxygen transport vehicles. Biomat., Art. Cell, Art. Org., 16, 31–49, 1988.

    CAS  Google Scholar 

  17. Lowe K.C. Synthetic Oxygen Transport Fluids Based on Perfluorochemicals: Applications in Medicine and Biology. Vox Sang 60, 129–140, 1991.

    Article  PubMed  CAS  Google Scholar 

  18. Reeder G.D. The Biochemistry and Physiology of Hemoglobin. Reston, Virginia, American Society of Extra-Corporeal Technology, 1986, p. 4–15.

    Google Scholar 

  19. Kern M.J. The use of Fluosol during PTCA in patient at risk for ischemic complications. The Journal of Invasive Cardiology, 5 (Suppl. A), 1A, 1993

    Google Scholar 

  20. Naito K., Mizuguchi K., and Nosé, Y. The need for standardizing of hemolysis. Artificial Organs 18(1), 7–10, 1994.

    Article  PubMed  CAS  Google Scholar 

  21. E.F. Bernstein, R.A. Indeglia, M.A. Shea, and R.I. Varco. Sublethal damage to the red cell from pumping. Circulation 35(4 Suppl): 1226–1233, 1967.

    Google Scholar 

  22. Lowe G.D.O., editor. Clinical Blood Rheology. CRC Press, Inc. Boca Raton, Florida, 1988.

    Google Scholar 

  23. Stuard J. and Nash G.B. Technological advances in blood rheology. Critical Reviews in Clinical Laboratory Sciences 28(1), 61–93, 1990.

    Article  Google Scholar 

  24. International Committee for Standardization in Haematology. Guidelines for measurement of blood viscosity and erythrocyte deformability. Clinical Hemorheology 6, 439–453, 1986.

    Google Scholar 

  25. Glanz S.A. Primer of Biostatistics. 2-d edition. McGraw-Hill Information Services Company, Health Professions Division, 1987.

    Google Scholar 

  26. Sutera S.P. Flow induced trauma to blood cells. Circulation Research 41(1), 2–8, 1977.

    Article  PubMed  CAS  Google Scholar 

  27. Leverett L.B., Heliums J.D., Alfrey C.P., and Lynch E.C. Red blood cell damage by shear stress. Biophysical Journal 12, 3, 257–273, 1972.

    Article  PubMed  CAS  Google Scholar 

  28. Greene H.L. and Madan S.R. The role of fluid viscoelastisity during in-vitro destruction of erythrocytes. Biorheology 12:377–382, 1975.

    PubMed  CAS  Google Scholar 

  29. Somer T. and Meiselman H.J. Disorders of blood viscosity. Annals of Medicine 25, 31–39, 1993.

    Article  PubMed  CAS  Google Scholar 

  30. Eckstein E.C., Tilles A.W., and Millero III F.J. Conditions for the occurrence of large near-wall excesses of small particles during blood flow. Microvascular Research 36:31–39, 1988.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kameneva, M.V. et al. (1997). Effect of Perfluorochemical Emulsion on Hemorheology and Shear Induced Blood Trauma. In: Nemoto, E.M., et al. Oxygen Transport to Tissue XVIII. Advances in Experimental Medicine and Biology, vol 411. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-5865-1_49

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-5865-1_49

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7689-7

  • Online ISBN: 978-1-4615-5865-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics