Skip to main content

Appendix. The Main Approaches in Hierarchical Optimization

  • Chapter
Hierarchical Optimization and Mathematical Physics

Part of the book series: Applied Optimization ((APOP,volume 37))

  • 315 Accesses

Abstract

Below, we present the main types of optimization problems with block constraint structure. We describe the Dantzig-Wolfe decomposition. This approach is fairly well covered in the literature, therefore, we present it briefly here, just to introduce the main ideas. The Kornai-Liptak decomposition principle is presented more comprehensively. Along with the main published constructions, we consider various schemes of reducing dimension based on the iterative resource redistribution. Special attention is given to the method of parametric decomposition, which is the standard method for optimizing large-scale systems and generalizes many well-known decomposition approaches. Here, the foundations of iterative aggregation are described. This method was initially applied in particular economic models. However, it was later modified and generalized for a wide class of problems of hierarchical optimization. Finally, the use of the Lagrange functional for the organization of the two-level iterative process with respect to primal and dual variables allows us to formulate a fairly universal approach to reducing dimensions in block problems of optimal control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References to Chapter 5

  1. Abadie I.M. and Williams A.C., Dual and Parametric Method in Decomposition, Recent Advances Math. ProgrammN.Y., Mc Graw Hill, 1963.

    Google Scholar 

  2. Balakrishnan A.V., A Computational Approach to the Maximum Principle, J. Comp. and Syst. Sci., 1971, vol. 5, no. 2, pp. 163–191.

    Article  MATH  Google Scholar 

  3. Balakrishnan A.V., On a New Computing Technique in Optimal Control, SIAM J. Contr., 1968, vol. 6, no. 2, pp. 149–173.

    MATH  Google Scholar 

  4. Bauman E.J., Trajectory Decompositions // Optimization Methods for Large- Scale Systems, New-York, Mc Graw-Hill, 1971, pp. 275–290.

    Google Scholar 

  5. Bell E.J., Primal-Dual Decomposition Programming, Ph.D. Thesis, Operations Research Center, Univ. of California at Berkeley, 1965.

    Google Scholar 

  6. Bellman R. and Kalaba R., Kvazilinearizatsiya i linejnye kraevye zadachi (Quasilinearization and Nonlinear Boundary Problems), Moscow: Mir, 1968.

    MATH  Google Scholar 

  7. Benders J.C., Partitioning Procedures for Solving Mixed Variables Programming Problems, Numer. Math., vol. 4, no. 3, 1962, pp. 238–252.

    MathSciNet  MATH  Google Scholar 

  8. Cohen G., On an Algorithm of Decentralized Optimal Control, J. Math. Anal and Appl, 1977, vol. 59, no. 2, pp. 242–259.

    Article  MathSciNet  MATH  Google Scholar 

  9. Dantzig G.B. and Wolfe P., Decomposition Algorithm for Linear Programs, Econometrica, vol. 29, no. 4, 1961, pp. 767–778.

    Article  MathSciNet  MATH  Google Scholar 

  10. Dantzig G.B. and Wolfe P., Decomposition Principle for Linear Programs, Oper. Res., vol. 8, no. 1, 1960, pp. 101–111.

    Article  MATH  Google Scholar 

  11. Dantzig G.B. and Wolfe P., Decomposition Algorithm for Problems of Linear Programs, Matematika, vol.8, no.l, 1964, pp. 151–160.

    Google Scholar 

  12. Geoffrion A.M., Relaxation and the Dual Method in Mathematical Programming, Working paper 135, Western Management Science Institute, University of California at Los Angeles, 1968.

    Google Scholar 

  13. Geoffrion A.M., Primal Resources-directive Approaches for Optimizing Nonlinear Decomposable Systems, Memorandum RM-5829-PR, The RAND Corporation, Santa Monica, California, 1958.

    Google Scholar 

  14. Gol’shtein E.G. and Yudin D.B., Novye napravleniya v linejnom program- mirovanii (New Trends in Linear Programming), Moscow: Sov. Radio, 1966.

    Google Scholar 

  15. Grateloup G. and Titli A., Two-level Dynamic Optimization Methods, J. Optimiz. Theory and Appl. 1975, vol. 15, no. 5, pp. 533–547.

    Google Scholar 

  16. Ishimatsu T., Mohri A. and M. Takata, Optimization of Weakly Coupled Subsystems by a Two-level Method, Int. J. Contr., 1975, vol. 22, no. 6, pp. 877–882.

    Article  MATH  Google Scholar 

  17. Jovdan M.R., A Unified Theory of Optimal Multilevel Control, Int. J. Contr, 1966, vol. 11. no. 1, pp. 93–101.

    Google Scholar 

  18. Kate A., Decomposition of Linear Programms by Direct Distribution, Econometrica, vol. 40, no. 5, 1972, pp. 883–898.

    Article  MathSciNet  MATH  Google Scholar 

  19. KhizderL.A., Dokazatel’stvo chodimosti prochessa iterativnogo agregirovaniya v obshem sluchae (Proof of Convergency of the Process of Iterative Aggregation in General Case) // Study in Mathematical Economics and Adjoint Problems, Moscow: Izd. Mosk. Gos. Univ., 1971.

    Google Scholar 

  20. Kornai I. and Liptak T., Planirovanie na dvykh urovnyakh (Planning on Two Levels) // Application of Mathematics in Economical Studies, vol. 3, Moscow: Mysl’, 1965.

    Google Scholar 

  21. Krasnosel’skii M.A., Ostrovskii A.Yu. and Sobolev A.V., 0 shodimosti metode odnoparametricheskogo agregirovaniya (On Convergence of a Method of One- parametric Aggregation), Avtom. Telemekhno. 9, 1978, pp. 102–109.

    MathSciNet  Google Scholar 

  22. Lasdon L.S., Optimizatsiya boVshikh sistem (Optimization of Large Systems), Moscow: Nauka, 1975.

    Google Scholar 

  23. Levin G.M. and Tanaev V.S., Dekompozichionnye metody optimizatsii proekt- nykh reshenij (Decomposition Methods of Optimization of Design Solutions), Minsk: Nauka Tekhn., 1978.

    Google Scholar 

  24. Levin G.M. and Tanaev V.S., 0 parametricheskoj dekompozichii ekstremaknykh zadach (On Parametric Decomposition of Extremal Problems), Kibernetika no. 3, 1977.

    Google Scholar 

  25. Levitin E.S., 0 differentsiruemosti po parametru optimal’nogo znacheniya para- metricheskikh zadach matematicheskogo programmirovaniya (On Differentiability by the Parameter of Optimal Value of Parametric Mathematical Programming Problem), Kibernetika, 1976, no. 1, pp. 44–59.

    Google Scholar 

  26. Luderer B., Losung Stkuktutierter Aufgaben der Optimalen Steuerung (mit- tels Zerlegungsverfahren), Math. Operationsforsch. Stat., Series Optimization, 1980, vol. 11, no. 4, pp. 593–603.

    Article  MathSciNet  MATH  Google Scholar 

  27. Mahmoud M.S., Dynamic Multilevel Optimization for a Class of Non-linear Systems, Int. J. Contr1979, vol. 30, no. 6, pp. 627–648.

    Google Scholar 

  28. Marchuk G.I., Metody vychislitel’noj matematiki (Methods of Computational Mathematics), Moscow: Nauka, 1977.

    Google Scholar 

  29. Proc. Inst. Matem. Sibirsk. Otdel. Akad. Nauk SSSR, vol. 10(27), Novosibirsk, 1973.

    Google Scholar 

  30. Mauer I., Shtrafnaya konstanta v blochnom programmirovanii (Penalty Constant in Block Programming), Izv. Akad. Nauk Estonsk. SSR, ser. Fizika Matem., vol. 20, no. 4, 1971, pp. 401–405.

    MathSciNet  MATH  Google Scholar 

  31. Mednitskii V.G., Ob optimal’nosti agregirovaniya v blochnoj zadache linejnogo programmirovaniya (On Optimality of Aggregation in the Block Linear Programming Problem) // Mathematical Methods for Solution of Economical Problems, vol. 3, 1972, pp.3–17.

    Google Scholar 

  32. Mednitskii Yu.V., On Decomposition of the Linear Programming Problem with Binding Constraints and Variables, Izv. Ross. Akad. Nauk, Teor. Sist. Upr., 1998, no. 4, pp. 134–140.

    Google Scholar 

  33. Mednitskii Yu.V., On Parallel Use of the Decomposition Method in a Pair of Dual Linear Programming Problems, Izv. Ross. Akad. Nauk, Teor. Sist. Upr., 1998, no. 1, pp. 107–112.

    Google Scholar 

  34. Movshovich S.M., Metod nevyazok dlya resheniya zadach blochnoj struktury (Discrepancy Method for the Solution of Problems with Block Structure), Ekonomika i Matem. Metody, vol. II, no. 4, 1966, pp. 571–577.

    Google Scholar 

  35. Pearson J.D., Dynamic Decomposition Techniques //Optimization Methods for Large-Scale Systems with Applications, New York, Mc Graw Hill, 1971, pp. 121–190.

    Google Scholar 

  36. Pervozvanskaya T.N. and Pervozvanskii A.A., Algoritm poiska optimal’nogo raspredeleniya chentralizovannykh resursov (Algorithm for the Search of Optimal Distribution of Centralized Resources), Izv. Akad. Nauk, Tekh. Kibern no. 3, 1966, pp. 16–19.

    Google Scholar 

  37. Petriczek G., On the Use of the *-technique in Two-level Dynamic Optimization, in Arch. Autom. i Telemec., 1978, vol. XXIII, no. 4, pp. 443–459.

    MathSciNet  Google Scholar 

  38. Polyak B.T. and Tret’yakov N.V., Ob odnom oterachionnom metode line- jnogo programmirovaniya i ego ekonomicheskoj interpretachii (On an Iteration Method in Linear Programming and Its Economical Interpretation), Ekonomika i Matem. Metody, vol. VIII, no. 5, 1972.

    Google Scholar 

  39. Razumikhin B.S., Metod fizicheskogo modelirovaniya v matematicheskom pro- grammirovanii i ekonomike. Metod iterativnoj dekompozichii i zadacha o raspredelenii resursov (Method of Physical Modeling in Mathematical Programming and Economics. Method of Iterative Decomposition and the Problems of Resource Distribution), Avtom. Telemekh., no. 11, 1972, pp. 111–123.

    Google Scholar 

  40. Ritter K., A Decomposition Method for Linear Programming Problems with Coupling Constraints and Variables, Mathematical Research Center, University of Wisconsin, rept. 739, 1967.

    Google Scholar 

  41. Rosen J.B., Primal Partition Programming for Block Diagonal Matrices, Numer. Math., vol. 6, 1964, pp. 250–260.

    MATH  Google Scholar 

  42. Rubinshtein G.Sh., 0 reshenii zadach linejnogo programmirovaniya bol’shogo ob’ema (On Solution of Large Linear Programming Problems) //Optimal Planning, no. 2, Novosibirsk, 1964.

    Google Scholar 

  43. Sanders J., A Nonlinear Decomposition Principle, Oper. Res., vol. 13, no. 2, 1965, pp. 266–271.

    Article  MATH  Google Scholar 

  44. Sanders J., Multilevel Control, IEEE Trans. Appl and Ind., 1964, vol. 83, no. 75, pp. 473–479.

    Article  Google Scholar 

  45. Schwartz B. and Tichatschke P., Uber eine Zerlegungsmethode zur Losung grossdimensionierter linearer Optimierungsaufgaben, Math. Operationsforsch. Stat., vol. 6, H. 1, 1975, pp. 123–128.

    Google Scholar 

  46. Shchennikov B.A., Blochnyj metod resheniya sistem linejnykh uravnenij boVshoj razmernosti (A Block Method for the Solution of Large Dimension Systems of Linear Equations), Ekonomika i Mat. Metody, vol. 1, no. 6, 1965, pp. 841–852.

    Google Scholar 

  47. Shchennikov B.A., Primenemie metode uterativnogo agregirovaniya dlja resheniya sistem linejnykh upavnenij (Application of the Method of Iterative Aggregation for the Solution of Systems of Linear Equations), Ekonomika i Mat Metody, vol. 11, no. 5, 1966, pp. 723–731.

    Google Scholar 

  48. Shchennikov B.A., Metod agregirovaniya dlja reshenija sistemy linejnykh uravnenij (Aggregation Method for the Solution of a System of Linear Equations), Dokl. Akad. Nauk SSSR, vol. 173, no. 4, 1967, pp. 781–784.

    Google Scholar 

  49. Shor N.Z., Primenenie obobshennogo gradientnogo spuska v blochnom pro- grammirovanii (Application of the Generalized Gradient Descent in Block Descent), Kibernetika, no. 3, 1967, pp. 53–56.

    MathSciNet  Google Scholar 

  50. Silverman G., Primal Decomposition of Mathematical Programs by Resource Allocation, Oper. Res., vol. 20, no. 1, 1972, pp. 58–74.

    Article  MATH  Google Scholar 

  51. Singh S.N., Decoupkling in Class of Nonlinear System by Output Feed-back, Unoform. and Contr., 1974, vol. 26, no. 1, pp. 61–81.

    Article  MATH  Google Scholar 

  52. Singh M.G. and Titli A., Systems: Decomposition, Optimization and Control, Oxford: Pergamon Press, 1978.

    Google Scholar 

  53. Singh M.G. and Titli A., Closed-loop Hierarchical Control for Nonlinear Systems Using Quasilinearization, Automatica, 1975, vol. 11, no. 5, pp. 541–547.

    Article  MATH  Google Scholar 

  54. Singh M.G. and Hassan M.F., Local and Global Optinal Control for Nonlinear Systems Using Two-level Methods, Int. J. Syst. Sci., 1976, vol. 8, no. 2, pp. 1375–1383.

    MathSciNet  Google Scholar 

  55. Singh M.G. and Hassan M.F., A Comparison of Two Hierarchical Optimization Methods, Int. J. Syst. Sci., 1978, vol. 7, no. 6, pp. 603–611.

    Article  MathSciNet  Google Scholar 

  56. Singh M.G. and Hassan M.F., Hierarchical Optimazation for Nonlinear Dynamical System with Non-separable cost function, Automatica, 1978, vol. 14, no. 1, pp. 99–101.

    Article  MATH  Google Scholar 

  57. Takahara Y., Multilevel Structure for a Class of Dynamic Optimization Problems, Optimaization Methods for Large-Scale Systems with Application, New- York: Mc Graw-Hill, 1971.

    Google Scholar 

  58. Ter-Krikorov A.M., OptimaUnoe upravlenije i matematicheskaya ekonomika (Optimal Control and Mathematical Economy), Moscow: Nauka, 1977.

    Google Scholar 

  59. Timokhin S.G., Dekompozichionnyj podhod k resheniju zadachi linejnogo pro- grammirovaniya boVshoj razmernosti (Decomposition Approach to the Solution of a Linear Programming Problem of Higher Dimension), Ekonomika i Matem. Melody, vol. XIII, no. 2, 1977, pp. 330–341.

    Google Scholar 

  60. Titli A., Commande hierarchisee et optimization des processus complexes, Dugon, 1975.

    Google Scholar 

  61. Umnov A.E., Metod shtrafnykh funkchij v zadachakh boVshoj razmernosti (The Method of Penalty Functions in Problems with Large Dimensions), Zh. Vych. Mat Mat Fizvol. 15, no. 6, 1975, pp. 1399–1411.

    Google Scholar 

  62. Vakhutinskii I.Ya., Dudkin L.N., and Shchennikov B.A., Iterativnoe agre- girovanie v nekotorykh optimaVnykh matematicheskikh modelyakh (Iterative Aggregation in Some Optimal Economical Models), Ekonomika i Matem. Metody, vol. IX, no. 3, 1973, pp. 420–434.

    Google Scholar 

  63. Verina L.F., 0 dekompozichii zadach linejnogo programmirovaniya kvaziblochnoj struktury (On Decomposition of Linear Programming Problems with Quasi- block Structure), Izv. Akad. Nauk Belorus. SSR, Fiz.-Mat. Nauki, no. 6, 1975, pp. 18–21.

    Google Scholar 

  64. Verina L.F. and Tanaev V.S., Dekompozichionnye podhody k resheniju zadach matematicheskogo programmirovanija (Decompositional Approaches to the Solution of Mathematical Programming Problems), an Overview. Ekonomika i Matem. Metody, vol. XI, no. 6, 1975, pp. 1160–1172.

    MathSciNet  Google Scholar 

  65. Volkonskii V.A., OptimaVnoe planirovanie v uslovijakh boVshoj razmernosti. Iteratimyje metody i princhip dekompozitsii (Optimal Planning for Large Number of Dimensions. Iterative Methods and Decomposition Principle), Ekonomika i Matem. Metody, vol. 1, no. 2, 1965, pp. 195–219.

    MathSciNet  Google Scholar 

  66. Volkonskii V.A., Belen’kii V.Z., Ivankov S.A., Pomanskii A.B., Shapiro A.D., Iterativnye metody v teorii igr i programmirovanii (Iterative Methods in Game Theory and Programming), M.: Nauka, 1974.

    Google Scholar 

  67. Wismer D.A., Distributed Multilevel Systems, Optimization Methods for Large- Scale Systems with Applications, New-York, 1971, pp. 233–260.

    Google Scholar 

  68. Yakovleva M.A., 0 passhirenii oblasti primenemija spechiaVnykh algoritmov linejnogo programmirovaniya (On Extending the Application Domain of Special Algorithms of Linear Programming), Dokl. Akad. Nauk SSSR, vol. 179, no. 5, 1968, pp. 1067–1069.

    Google Scholar 

  69. Yakovleva M.A., Dvuhkomponentnaya zadacha linejnogo programmirovaniya (Two-Component Linear Programming Problem) // OptimaFnoe Planirovanie, no.2, Novosibirsk, 1964.

    Google Scholar 

  70. Yudin D.B. and Gol’shtein E.G., Zadachi i metody linejnogo programmirovaniya (Problems and Methods of Linear Programming), Moscow: Sov. Radio, 1964.

    Google Scholar 

  71. Zschau E., A Primal Decomposition Algorithm for Linear Programming, Graduate School of Buiseness, Stanford University, no. 91, 1967.

    Google Scholar 

  72. Zoutendijk G., Metody vozmozhnykh napravlenij (Methods of Feasible Directions), Moscow: Inostr. Lit., 1963.

    MATH  Google Scholar 

  73. Zvyagina R.A., Zadachi linejnogo programmirovaniya s matritsami proizvoVnoj blochoj struktury (Linear Programming Problem with Arbitrary Block Structure Matrices), Dokl. Akad. Nauk SSSR, vol. 196, no. 4, 1971.

    Google Scholar 

  74. Zvyagina R.A., Zadachi linejnogo programmirovaniya s blochno-diagonaVnymi matritsami (Linear Programming Problem with Block Diagonal Matrices) // Optimal’noe Planirovanie, no. 2, Novosibirsk, 1964, pp. 755–758.

    Google Scholar 

  75. Zvyagina R.A., Ob obschem metode resheniya zadach linejnogo programmirovanija blochnoj struktury (On a General Method of Solution of Linear Programming Problems with Block Structure) // Optimizatsiya, 1(18), Novosibirsk, 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tsurkov, V. (2000). Appendix. The Main Approaches in Hierarchical Optimization. In: Hierarchical Optimization and Mathematical Physics. Applied Optimization, vol 37. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-4667-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-4667-2_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-7112-0

  • Online ISBN: 978-1-4615-4667-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics