Skip to main content

Bragg Intensities and Diffuse Scattering in Ag2Se: A Molecular Dynamics Study

  • Chapter
Condensed Matter Theories

Part of the book series: Condensed Matter Theories ((COMT,volume 6))

Abstract

Superionic conductor Ag2Se is studied with the molecular dynamics technique using effective two-body interaction pair potentials. These interaction potentials include steric, charge transfer, and charge-dipole interactions. The superionic phase is characterized by a stable bcc sublattice of Se- - ions in which Ag+ ions exhibit liquid-like diffusion. The temperature dependence of the structural and dynamical correlations are studied. The results for structural correlations include the pair distribution functions, coordination numbers, bond angle distributions, and wave vector dependence of the Bragg intensities. A detailed comparison with neutron and x-ray scattering results is made wherever possible. The anomalous diffuse neutron and x-ray scattering in the vicinity of q0=(1.6, 1, 0) is calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.D. Mahan and W.L. Roth, in “’Superionic Conductors” (New York: Plenum, 1976)

    Google Scholar 

  2. P. Vashishta, J.N. Mundy, and G.K. Shenoy, in “Fast Ion Transport in Solids” (Amsterdam: North-Holland, 1979)

    Google Scholar 

  3. M.B. Salamon, in “Physics of Superionic Conductors: Topics in Current Physics” (Berlin: Springer, 1979)

    Book  Google Scholar 

  4. P. Vashishta, Solid State Ionics 18 & 19, 3 (1986).

    Article  Google Scholar 

  5. G.A. Wiegers (Amer. Min., 56 1882 (1971)) Structure Reports 37A, 131 (1971).

    Google Scholar 

  6. S. Miyatani, J.Phys. Soc. of Japan 13, 317 (1958)

    Article  ADS  Google Scholar 

  7. P. Junod, Helv. Phys. Acta 32, 567 (1959); ibid p. 601.

    Google Scholar 

  8. K. Shahi, Phys. Stat. Sol. (a) 41, 11 (1977)

    Article  ADS  Google Scholar 

  9. V.M. Glazov and N.M. Grabchak, Sov. Phys. Semicond. 12 448 (1978)

    Google Scholar 

  10. H. Endo, M. Yao, and K. Ishida, J.Phys. Soc. of Japan 48, 235 (1980).

    Article  ADS  Google Scholar 

  11. C. Tubandt and E. Lorenz, Z, Physik Chem. 87., 513 (1914)

    Google Scholar 

  12. R.L. Allen and W.J. Moore, J.Phys. Chem. 63, 223 (1959)

    Article  Google Scholar 

  13. H. Okazaki, J, Phys. Soc, of Japan 23, 355 (1967).

    Article  ADS  Google Scholar 

  14. I. Bartkowicz and S. Mrowec, Phys. Stat. Sol. (b) 49, 101 (1972)

    Article  ADS  Google Scholar 

  15. H. Okazaki, J. Phys. Soc. of Japan 43, 213 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  16. T. Ohachi and I. Taniguchi, Sol. State Ionics 3/4, 89 (1981).

    Article  Google Scholar 

  17. C. Ching-liang and Z.G. Pinsker, Sov. Phys. Crystal1. 7, 52 (1962)

    Google Scholar 

  18. Z.G. Pinsker, C. Ching-liang, R.M. Imamov and E.L. Lapidus, Sov. Phys. Crystall. 10, 225 (1965).

    Google Scholar 

  19. G.A. Efendiev, I.R. Nuriev, and R.B. Shafizade, Sov. Phys. Crystall. 14, 787 (1970).

    Google Scholar 

  20. K. Funke, J. Kalus, and R. Lechner, Solid State Commun. 14, 1021 (1974)

    Article  ADS  Google Scholar 

  21. G. Eckold, K. Funke, J. Kalus, and R. Lechner, Phys. Lett, 55A 125 (1976); J. Phys. Chem. Solids 37, 1097 (1976)

    ADS  Google Scholar 

  22. K. Funke, Sol. State Ionics 6, 93 (1982)

    Article  Google Scholar 

  23. A. Häch, K. Funke, R.E. Lechner, and T. Ohachi, Solid State Ionics 9 & 10, 1353 (1983).

    Article  Google Scholar 

  24. S.M. Shapiro, D. Semmingsen, and M. Salamon, in “Proc. Int. Conf. Lattice Dynamics” (Flammarion, Paris, 1978) p.538

    Google Scholar 

  25. B.H. Grier, S.M. Shapiro, and R.J. Cava Phys. Rev. B 29 3810 (1984).

    Article  ADS  Google Scholar 

  26. P. Vashishta and A. Rahman, Phys. Rev. Lett. 40 1337 (1978); A. Rahman and P. Vashishta, in “Physics of Superionic Conductors”, ed. J.W.Perram (Plenum, 1983) p. 93.

    Article  ADS  Google Scholar 

  27. P. Vashishta, I. Ebbsjä, R. Dejus and K. Skäld, J. Phys. C: Solid State Phys. 18, L291 (1985)

    Article  ADS  Google Scholar 

  28. I. Ebbsjä, P. Vashishta, R. Dejus and K. Skäld, J.Phys. C: Solid State Phys. 20, L441 (1987).

    Article  ADS  Google Scholar 

  29. P. Vashishta and A. Rahman, in “Fast Ion Transport in Solids”, eds. P. Vashishta, J.N. Mundy and G.K. Shenoy (Elsevier North-Holland, 1979) p. 527.

    Google Scholar 

  30. P. Vashishta, R.K.Kalia, J.P.Rino, I.Ebbsjä, submitted to Phys. Rev. B.

    Google Scholar 

  31. P. Vashishta, R. K. Kalia, G. A. Antonio, I. Ebbsjä, to be submitted.

    Google Scholar 

  32. P. Vashishta, R.K. Kalia, G.A. Antonio, I. Ebbsjä, Phys. Rev. Lett. 62, 1651 (1989)

    Article  ADS  Google Scholar 

  33. C.-K.Loong, P. Vashishta. R.K. Kalia, M.H. Degani, D.L. Price, J.D. Jorgensen, D.G. Hinks, B. Dabrowski, Phys. Rev. Lett. 62, 2628 (1989).

    Article  ADS  Google Scholar 

  34. T. Sakuma, K. Iida, K. Honma, and H. Okazaki, J. Phys. Soc. of Japan 43, 538 (1977).

    Article  ADS  Google Scholar 

  35. R.J. Cava, F. Reidinger, and B.J. Wuensch, Solid State Commun. 24 411 (1977).

    Article  ADS  Google Scholar 

  36. Y. Tsuchiya, S. Tamaki, Y. Waseda, and J.M. Toguri, J. Phys. C: Solid State Phys. 11, 651 (1978).

    Article  ADS  Google Scholar 

  37. R.J. Cava, F. Reindinger and B.J. Wuensch, J. Sol. State Chem. 31, 69 (1980).

    Article  ADS  Google Scholar 

  38. J.P. Hansen and I.R. McDonald, “Theory of Simple Liquids” (Academic Press, London, 1976).

    Google Scholar 

  39. International Tables for X-Ray Crystallography — vol. IV, eds. J.A. Ibers and W.C. Hamilton (The Kynoch Press, Birmingham, England (1974)); V.F.Sears, in “Methods of Experimental Physics” Vol. 23-Part A, eds. D.L.Price and K.Skäld (Academic Press, 1987).

    Google Scholar 

  40. R.J. Cava and D.B. McWhan, Phys. Rev. Lett. 45, 2046 (1980).

    Article  ADS  Google Scholar 

  41. J.P. Rino, Y.M.M. Hornos, G.A. Antonio, I. Ebbsjä, K. Kalia, and P. Vashishta, J.Chem. Phys. 89, 7542 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media New York

About this chapter

Cite this chapter

Rino, J.P., Vashishta, P., Kalia, R.K. (1991). Bragg Intensities and Diffuse Scattering in Ag2Se: A Molecular Dynamics Study. In: Fantoni, S., Rosati, S. (eds) Condensed Matter Theories. Condensed Matter Theories, vol 6. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-3686-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-3686-4_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6638-6

  • Online ISBN: 978-1-4615-3686-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics