Skip to main content

Cardiovascular Flow Velocity Measurements by 2D Doppler Imaging for Assessment of Vascular Function

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 346))

Abstract

Clinical two-dimensional (2D) Doppler ultrasound flow velocity measurement is important for determination of arterial wall shear stress, blood-tissue exchange, myocardial and valvular function. Such 2D Doppler flow velocity images are usually displayed in color, superimposed on the gray-scale, cross-section structural images of the tissue. There are several limitations to this technique of flow measurement, some due to the instrumentation and some to the way the measurement is made. In this report we concentrate on the latter, identifying the main causes of errors and distortion, and outlining the methodology for minimizing them. The suggested method takes into account the spatial location and orientation of both the ultrasound transducer and the blood vessel. It allows quantification of vascular flow patterns, thus enhancing the usefulness of this important non-invasive diagnostic tool.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bassingthwaighte JB, Wang CW, Chan IS. Blood-tissue exchange via transport and transformation by endothelial cells. Circ Res 1989; 65: 997–1020.

    Article  PubMed  CAS  Google Scholar 

  2. Dewey CF, Davies PF, Gimbrone MA. Turbulence, disturbed flow and vascular endothelium. In: Yoshida Y, Yamaguchi T, Caro CG, Glagov S, Nerem RM (eds) Role of Blood Flow in Atherogenesis. Springer-Verlag: Tokyo, pp 201–204, 1988.

    Chapter  Google Scholar 

  3. O’Brien JR. Shear-induced platelet aggregation. Lancet 1990; 335: 711–713.

    Article  PubMed  Google Scholar 

  4. Moritz WE, Pearlman AS, McCabe DH, Medema DK, Ainsworth ME, Boles MS. An ultrasound technique for imaging the ventricle in three-dimensions and calculating its volume. IEEE Trans Biomed Eng 1983; 30: 482–492.

    Article  PubMed  CAS  Google Scholar 

  5. Geiser EA, Ariet M, Conetta DA, Lupkiewicz SM, Christie LG, Conti CR. Dynamic three-dimensional echocardiographic reconstruction of the intact human left ventricle: Technique and initial observations in patients. Am Heart J 1982; 103: 1056–1065.

    Article  PubMed  CAS  Google Scholar 

  6. Sawada H, Fujii J, Kato K, Onoe M, Kuno K. Three-dimensional reconstruction of the left ventricle from multiple cross sectional echocardiograms: Value for measuring left ventricular volume. Br Heart J 1983; 50: 438–442.

    Article  PubMed  CAS  Google Scholar 

  7. McCann HA, Chandrasekaran K, Hoffman EA, Sinak LJ, Kinter TM, Greenleaf JF. A method for three-dimensional ultrasonic imaging of the heart in vivo. Dynamic Cardiovasc Imaging 1987; 1:97–109.

    Google Scholar 

  8. Levine RA, Handschumacher MD, Sanfilippo Al, Hagege AA, Harrigan P, Marshall JE, Weyman AE. Three-dimensional echocardiographic reconstruction of the mitral valve, with implication for the diagnosis of mitral valve prolapse. Circulation 1989; 80: 589–598.

    Article  PubMed  CAS  Google Scholar 

  9. Martin RW, Bashein G. Measurement of stroke volume with three-dimensional transesophageal ultrasonic scanning: Comparison with thermodilution measurement. Anesthesiology 1989; 70: 470–476.

    Article  PubMed  CAS  Google Scholar 

  10. Martin RW Bashein G, Detmer PR, Moritz WE. Ventricular volume measurement from a multiplanar transesophageal ultrasonic imaging system: An in vitro study. IEEE Trans Biomed Eng 1990; 37: 442–449.

    Article  PubMed  CAS  Google Scholar 

  11. Kuroda T, Kinter TM, Seward JB, Yanagi H, Greenleaf JF. Accuracy of three-dimensional volume measurement using biplane transesophageal echocardiographic probe: In vitro experiment. J Am Soc Echocardiogr 1991; 4: 475–484.

    PubMed  CAS  Google Scholar 

  12. Kitney RI, Moura L, Straughan K. 3-D visualization of arterial structures using ultrasound and voxel modeling. Int J Card Imaging 1989; 4: 135–143.

    Article  PubMed  CAS  Google Scholar 

  13. Potkin BN, Bartorelli AL, Gessert JM, Neville RF, Almagor Y, Roberts WC, Leon MB. Coronary artery imaging with intravascular high-frequency ultrasound. Circulation 1990; 81: 1575–1585.

    Article  PubMed  CAS  Google Scholar 

  14. Nissen SE, Grines CL, Gurley JC, Sublett K, Haynie D, Diaz C, Booth DC, DeMaria AN. Application of a new phased-array ultrasound imaging catheter in the assessment of vascular dimensions. Circulation 1990; 81: 660–666.

    Article  PubMed  CAS  Google Scholar 

  15. Rosenfield K, Losordo DW, Ramaswamy K, Pastore JO, Langevin RE, Razvi S, Kosowsky BD, Isner JM. Three-dimensional reconstruction of human coronary and peripheral arteries from images recorded during two-dimensional intravascular ultrasound examination. Circulation 1991; 84: 19381956.

    Google Scholar 

  16. Van Dijk P. Direct cardiac NMR imaging of heart wall and blood flow velocity. J Comput Assist Tomogr 1984; 8: 429–436.

    Article  PubMed  Google Scholar 

  17. Bryant DJ, Payne JA, Firmin DN, Longmore DB. Measurement of flow with NMR imaging using a gradient pulse and phase difference technique. J Comput Assist Tomogr 1984; 8: 588–593.

    Article  PubMed  CAS  Google Scholar 

  18. Mohiaddin RH, Amanuma MA, Kilner PJ, Pennel DJ, Manzara C, Longmore DB. MR phase-shift velocity mapping of mitral and pulmonary venous flow. J Comput Assist Tomogr1991; 15: 237–243.

    Article  PubMed  CAS  Google Scholar 

  19. Van Rossum A, Sprenger KH, Peels FC, et al. In vivo validation of quantitative flow imaging in arteries and veins using magnetic resonance phase shift techniques. Soc of Magnetic Resonance in Medicine, Amsterdam, 1989; 205.

    Google Scholar 

  20. Kilner PJ, Firmin DN, Rees RSO, et al. Magnetic resonance jet velocity mapping for assessment of valve and great vessel stenosis. Radiology 1991; 178: 229–235.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Adam, D.R., Kempner, K.M., Vivino, M.A., Tucker, E.E., Jones, M. (1993). Cardiovascular Flow Velocity Measurements by 2D Doppler Imaging for Assessment of Vascular Function. In: Sideman, S., Beyar, R. (eds) Interactive Phenomena in the Cardiac System. Advances in Experimental Medicine and Biology, vol 346. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2946-0_38

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2946-0_38

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6280-7

  • Online ISBN: 978-1-4615-2946-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics