Skip to main content

Cognitive Neuroethology: An Approach to Understanding Biological Neural Networks

  • Chapter
Intelligent Systems
  • 70 Accesses

Abstract

What are the prospects for understanding mental events using the tools of experimental neurobiology? This essay considers the techniques currently available for determining neural state in an intact, behaving animal, progress in correlating neural and mental states, and prospects for predicting mental states from neural and behavioral state. The essay also outlines a research approach to this problem: cognitive neuroethology, that is, the study of the neural basis of cognitive behaviors performed by an animal in its natural environment. The essay suggests that this approach may prove fruitful for the study of the neural basis of mental states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almirall H., Broquetas, A., & Jofre, L. (1991). Active microwave computed brain tomography: the response to a challenge. J. Neurosci. Methods, 36, 239–251.

    Article  Google Scholar 

  2. Amassian V. E., Cracco J. B., Cracco R. Q., Eberle L., Maccabee, P. J., & Rudell, A. (1988). Suppression of human visual perception with the magnetic coil over occipital cortex. J. Physiol., 398, 40P.

    Google Scholar 

  3. Balish M., Sato S., Connaughton, P., & Kufta, C. (1991). Localization of implanted dipoles by magnetoencephalography. Neurology, 41, 1072–1076.

    Article  Google Scholar 

  4. Belliveau J. W., Kennedy D. N., McKinstry, R. C., Buchbinder B. R., Weisskoff R. M., Cohen M. S., Vevea J. M., Brady, T. J., & Rosen, B. R. (1991). Functional mapping of the human visual cortex by magnetic resonance imaging. Science, 254, 716–719.

    Article  Google Scholar 

  5. Berry, M. S., & Pentreath, V. M. (1976). Criteria for distinguishing between monosynaptic and polysynaptic transmission. Br. Res., 105, 1–20.

    Article  Google Scholar 

  6. Blasdell, G. G. (1989). Visualization of neuronal activity in monkey striate cortex. Ann. Rev. Physiol., 51, 561–581.

    Article  Google Scholar 

  7. Bodnar D. A., Gozani S. N., Nevin, R., & Miller, J. P. (1989). The role of identified wind sensitive local interneurons in the cricket cercal sensory system. Society for Neuroscience Abstracts. 15(2), 1288

    Google Scholar 

  8. Brown A. M., Baur P. S., Jr., & Tuley F. H., Jr. (1975). Phototransduction in Aplysia neurons: Calcium release from pigmented granules is essential. Science, 188, 157–160.

    Article  Google Scholar 

  9. Brown, H. M., & Brown, A. M. (1972). Ionic basis of the photoresponse of Aplysiagiant neuron: K+ permeability increase. Science, 178, 755–756.

    Article  Google Scholar 

  10. Camhi, J. M. (1984). Neuroethology. Sunderland, MA: Sinauer Associates.

    Google Scholar 

  11. Chien, C.-B., & Pine, J. (1991). An apparatus for recording synaptic potentials from neuronal cultures using voltage-sensitive fluorescent dyes. J. Neurosci. Methods, 38, 93–105.

    Article  Google Scholar 

  12. Cohen D., Cuffin B. N., Yonokuchi K., Maniewski R., Purcell, C., Cosgrove G. R., Ives J., Kennedy, J. G., & Schomer, D. L. (1990). MEG versus EEG localization test using implanted sources in the human brain. Ann. Neurol., 28(6), 811–817.

    Article  Google Scholar 

  13. Cohen, L., & Wu, J.-y. (1990). One neuron, many units? Nature, 346(6280), 108–109.

    Article  Google Scholar 

  14. Cohen, L. B., & De Weer, P. (1981). Structural and metabolic processes directly related to action potential propagation. In E. R. Kandel (Eds.), Cellular Biology of Neurons, Part 1 (pp. 137–159). Bethesda, MD: American Physiological Society.

    Google Scholar 

  15. Cohen L. B., Hopp, H.-P., Wu, J.-Y., Xiao C., London, J., & Zecevic, D. (1989). Optical measurements of action potential activity in invertebrate ganglia. Ann. Rev. Physiol., 51, 527–541.

    Article  Google Scholar 

  16. Cohen, L. G., & Hallet, M. (1988). Non-invasive mapping of human motor cortex. In P. M. Rossini & C. D. Marsden (Ed.), Non-invasive stimulation of brain and spinal cord: Fundamentals and clinical applications (pp. 67–71). New York, NY: Alan R. Liss, Inc.

    Google Scholar 

  17. Connors, B. W., & Gutnick, M. J. (1990). Intrinsic firing patterns of diverse neocortical neurons. Trends Neurosci., 13(3), 99–104.

    Article  Google Scholar 

  18. Cuff B. N., Cohen D., Yonokuchi K., Maniewski R., Purcell, C., Cosgrove G. R., Ives J., Kennedy, J., & Schomer, D. (1991). Tests of EEG localization accuracy using implanted sources in the human brain. Ann. Neurol., 29(2), 132–138.

    Article  Google Scholar 

  19. Davey K. R., Cheng, C. H., &: Epstein, C. M. (1991). Prediction of magnetically induced electric fields in biological tissue. IEEE Trans. Biomed. Eng., 38(5), 418–422.

    Article  Google Scholar 

  20. Doyle, Sir A. C. (1894). The Resident Patient. In The Memoirs of Sherlock Holmes London: George Newnes, Limited.

    Google Scholar 

  21. Drevets, W. C., Videen T. O., Price J. L., Preskorm S. H., Carmichael, S. T., & Raichle, M. E. (1992). A functional anatomical study of unipolar depression. J. Neurosci., 12(9), 3628–3641.

    Google Scholar 

  22. Duhamel, J.-R., Colby, C. L., & Goldberg, M. E. (1992). The updating of the representation of visual space in parietal cortex by intended eye movements. Science, 255, 90–92.

    Article  Google Scholar 

  23. Durand D., Ferguson, A. S., & Dalbasti, T. (1992). Effect of surface boundary on neuronal magnetic stimulation. IEEE Trans. Biomed. Eng., 39(1), 58–64.

    Article  Google Scholar 

  24. Farber, I. C., & Grinvald, A. (1983). Identification of presynaptic neurons by laser photostimulation. Science, 222, 1025–1027.

    Article  Google Scholar 

  25. Fox P. T., Perlmutter, J. S., & Raichle, M. E. (1985). A stereotaxic method of anatomical localization for positron emission tomography. J. Comput. Assist. Tomogr., 9, 141–153.

    Article  Google Scholar 

  26. Freeman, W. J. (1975). Mass Action in the Nervous System. New York, NY: Academic Press, Inc.

    Google Scholar 

  27. Fuster, J. M. (1989). The Prefrontal Cortex: Anatomy, Physiology, and Neuropsychology of the Frontal Lobe (2nd ed.). New York, NY: Raven Press.

    Google Scholar 

  28. Fuster, J. M., & Alexander, G. E. (1970). Delayed response deficit by cryogenic depression of frontal cortex. Br. Res., 20, 85–90.

    Article  Google Scholar 

  29. Getting, P. A., & Dekin, M. S. (1985). Mechanisms of pattern generation underlying swimming in Tritonia: IV. Gating of central pattern generator. J. Neurophysiol., 53(2), 466–480.

    Google Scholar 

  30. Gevins A. S., Morgan N. H., Bressler S. L., Cutillo B. A., White R. M., Illes J., Greer D. S., Doyle, J. C., & Zeitlin, G. M. (1987). Human neuroelectric patterns predict performance accuracy. Science, 235, 580–585.

    Article  Google Scholar 

  31. Graubard, K., & Ross, W. N. (1985). Regional distribution of calcium influx into bursting neurons detected with Arsenazo III. Proc. Nat. Acad. Sci. USA, 82, 5565–5569.

    Article  Google Scholar 

  32. Harris-Warwick, R. M., & Marder, E. (1991). Modulation of neural networks for behavior. Annu. Rev. Neurosci., 14, 39–57.

    Article  Google Scholar 

  33. Herscovitch P., Markham, J., & Raichle, M. E. (1983). Brain blood flow measured with intravenous H 2 15O. I. Theory and error analysis. J. Nucl. Med., 24, 782–789.

    Google Scholar 

  34. Hilal S. K., Ra, J. B., Oh C. H., Mun I. K., Einstein, S. G., & Roschmann, P. (1988). Sodium imaging. In D. D. Stark & W. G. Bradley Jr. (Eds.), Magnetic Resonance Imaging (pp. 715-731). St. Louis, Missouri: Mosby.

    Google Scholar 

  35. Hille, B. (1984). Ionic Channels of Excitable Membranes. Sunderland, MA: Sinauer Associates.

    Google Scholar 

  36. Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol., 117, 500–544.

    Google Scholar 

  37. Holder, D. S. (1987). Feasibility of developing a method of imaging neuronal activity in the human brain: a theoretical review. Med. Biol. Eng. Comp., 25, 2–11.

    Article  Google Scholar 

  38. Hopfield, J.J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proc. Nat. Acad. Sci. USA, 79, 2554–2558.

    Article  MathSciNet  Google Scholar 

  39. Huettner, J. E., & Baughman, R. W. (1988). The pharmacology of synapses formed by identified corticocollicular neurons in primary cultures of rat visual cortex. J. Neurosci., 8(1), 160–175.

    Google Scholar 

  40. Hume, R. I., Getting, P. A., & Del Beccaro, M. A. (1982). Motor organization of Tritonia swimming, I: Quantitative analysis of swim behavior and flexion neuron firing patterns. J. Neurophysiol., 47, 60–74.

    Google Scholar 

  41. Institute of Medicine (U. S.). Committee on a National Neural Circuitry Database (1991). Mapping the brain and its functions: integrating enabling technologies into neuroscience research. Washington, D. C: National Academy Press.

    Google Scholar 

  42. Kandel, E. R. (1989). Genes, nerve cells, and the remembrance of things past. J. Neuropsychiatr., 1(2), 103–125.

    Google Scholar 

  43. Kauer, J. S. (1991). Contributions of topography and parallel processing to odor coding in the vertebrate olfactory pathway. Trends Neurosci., 14(2), 79–85.

    Article  Google Scholar 

  44. Kesner, R. P., & Olton, D. S. (1990). Neurobiology of Comparative Cognition. Hillsdale, New Jersey: Lawrence Erlbaum Associates.

    Google Scholar 

  45. Koch, C., & Segev, I. (1989). Methods in Neuronal Modeling. Cambridge, MA: The MIT Press.

    Google Scholar 

  46. Kornhuber, H. H. (1974). Cerebral cortex, cerebellum, and basal ganglia: An introduction to their motor functions. In F. O. Schmitt & F. G. Worden (Eds.), The Neurosciences: Third Study Program Cambridge, MA: MIT Press.

    Google Scholar 

  47. Kruger, J. (1983). Simultaneous individual recordings from many cerebral neurons: Techniques and results. Rev. Physiol. Biochem. Pharmacol., 98, 177–233.

    Article  Google Scholar 

  48. Lieke E. E., Frostig R. D., Arieli A., Ts’o, D. Y., Hildesheim, R., & Grinvald, A. (1989). Optical imaging of cortical activity: Real-time imaging using extrinsic dye-signals and high resolution imaging based on slow intrinsic-signals. Ann. Rev. Physiol., 51, 542–560.

    Article  Google Scholar 

  49. Llinas, R. R. (1988). The intrinsic electrophysiological properties of mammalian neurons: Insights into central nervous system function. Science, 242, 1654–1664.

    Article  Google Scholar 

  50. London J. A., Zecevic, D., & Cohen, L. B. (1987). Simultaneous optical recording of activity from many neurons during feeding in Navanax. The Journal of Neuroscience, 7(3), 649–661.

    Google Scholar 

  51. Lorenz, K. Z. (1981). The Foundations of Ethology. New York, NY: Simon and Schuster.

    Google Scholar 

  52. Mahowald, M., & Douglas, R. (1991). A silicon neuron. Nature, 354, 515–518.

    Article  Google Scholar 

  53. Meyers, R. D., & Knott, P. J. (Eds.). (1986). Neurochemical analysis of the conscious brain: Voltammetry and push-pull perfusion. New York, NY: New York Academy of Sciences Press.

    Google Scholar 

  54. Miles, R., & Wong, R. K. S. (1986). Excitatory synaptic interactions between CA3 neurones in the guinea-pig hippocampus. J. Physiol., 373, 397–418.

    Google Scholar 

  55. Miller, J. P., & Selverston, A. I. (1979). Rapid killing of single neurons by irradiation of intracellularly injected dye. Science, 206, 702–704.

    Article  Google Scholar 

  56. Miller, J. P., & Selverston, A. I. (1985). Neural mechanisms for the production of the lobster pyloric motor pattern. In A. I. Selverston (Eds.), Model Neural Networks and Behavior (pp. 37–48). New York: Plenum Press.

    Google Scholar 

  57. Moonen, C. T. W., van Zijl C. M., Frank J. A., Le Bihan, D., & Becker, E. D. (1990). Functional magnetic resonance imaging in medicine and physiology. Science, 250, 53–61.

    Article  Google Scholar 

  58. Morton D. W., Chiel H. J., Cohen, L. B., & Wu, J.-y. (1991). Optical methods can be utilized to map the location and activity of putative motor neurons and interneurons during rhythmic patterns of activity in the buccal ganglion of Aplysia. Brain Research, 564, 45–55.

    Article  Google Scholar 

  59. Mountcastle V. B., Reitboeck H. S., Poggio, G. F., & Steinmetz, M. A. (1991). Adaptation of the Reitboeck method of multiple microelectrode recording to the neocortex of the waking monkey. J. Neurosci. Methods, 36, 77–84.

    Article  Google Scholar 

  60. Mpitsos G. J., Burton R. M., Creech, H. C., & Soinila, S. O. (1988). Evidence for chaos in spike trains of neurons that generate rhythmic motor patterns. Br. Res. Bull., 21, 529–538.

    Article  Google Scholar 

  61. Mpitsos, G. J., & Cohan, C. S. (1986). Convergence in a distributed nervous system: Parallel processing and self-organization. J. Neurobiol., 17(5), 517–545.

    Article  Google Scholar 

  62. Nelson M. E., Furmanski, W., & Bower, J. M. (1989). Simulating neurons and networks on parallel computers. In C. Koch & I. Segev (Eds.), Methods in Neuronal Modeling (pp. 397–437). Cambridge, MA: MIT Press.

    Google Scholar 

  63. Nunez, P. L. (1981). Electric Fields of the Brain. New York, NY: Oxford University Press.

    Google Scholar 

  64. Osborne P. G., O’ Connor W. T., Kehr, J., & Ungerstedt, U. (1991). In vivo characterization of extracellular dopamine, GABA and acetylcholine from the dorsolateral striatum of awake freely moving rats by chronic microdialysis. J. Neurosci. Methods, 37, 93–102.

    Article  Google Scholar 

  65. Pao, Y.-H. (1989). Adaptive pattern recognition and neural networks. Reading, MA: Addison-Wesley Publishing Co., Inc.

    MATH  Google Scholar 

  66. Pardo J. V., Pardo, P. J., & Raichle, M. E. (1991). Human brain activation during dysphoria. Soc. Neurosci. Abstr., 17 part 1, 66

    Google Scholar 

  67. Parsons D. W., Termaat, A., & Pinsker, H. M. (1983). Selective recording and stimulation of individual identified neurons in freely behaving Aplysia. Science, 221, 1203–1206.

    Google Scholar 

  68. Parsons T. D., Salzberg B. M., Obaid A. L., Raccuia-Behling, F., & Kleinfeld, D. (1991). Long-term optical recording of patterns of electrical activity in ensembles of cultured Aplysia neurons. J. Neurophysiol., 66, 316–333.

    Google Scholar 

  69. Patterson, M. M., & Kesner, R. P. (1981). Electrical stimulation research techniques. New York: Academic Press.

    Google Scholar 

  70. Peacocke, R. D., & Graf, D. H. (1990). An introduction to speech and speaker recognition. Computer, 23 (Aug), 26–33.

    Article  Google Scholar 

  71. Petersen S. E., Fox P. T., Snyder, A. Z., & Raichle, M. E. (1990). Activation of extrastriate and frontal cortical areas by visual words and word-like stimuli. Science, 249, 1041–1044.

    Article  Google Scholar 

  72. Pinsker, H. M. (1980). Neuroethological analysis of information processing during behavior. In H. M. Pinsker & W. D. Willis Jr. (Eds.), Information processing in the nervous system (pp. 285–312). New York: Raven.

    Google Scholar 

  73. Popper, K. R., & Eccles, J. C. (1977). The self and its brain. New York, NY: Springer International.

    Book  Google Scholar 

  74. Posner M. I., Petersen S. E., Fox, P. T., & Raichle, M. E. (1988). Localization of cognitive operations in the human brain. Science, 240, 1627–1631.

    Article  Google Scholar 

  75. Raichle, M. E. (1983). Positron emission tomography. Annu. Rev. Neurosci., 6, 249–267.

    Article  Google Scholar 

  76. Raichle M. E., Martin, W. R. W., Herscovitch P., Mintun, M. A., & Markham, J. (1983). Brain blood flow measured with intravenous H 2 15O. II. Implementation and validation. J. Nucl. Med., 24, 790–798.

    Google Scholar 

  77. Regan, D. (1989). Human brain electrophysiology: Evoked potentials and evoked magnetic fields in science and medicine. New York, NY: Elsevier.

    Google Scholar 

  78. Ristau, C. A. (1991a). Aspects of the cognitive ethology of an injury-feigning bird, the piping plover. In C. A. Ristau (Eds.), Cognitive Ethology: The Minds of Other Animals (pp. 91–126). Hillsdale, New Jersey: Lawrence Erlbaum Associates.

    Google Scholar 

  79. Ristau, C. A. (1991b). Cognitive Ethology: The Minds of Other Animals. Hillsdale, New Jersey: Lawrence Erlbaum Associates.

    Google Scholar 

  80. Roitblat, H. L. (1987). Introduction to Comparative Cognition. New York: W. H. Freeman and Company.

    Google Scholar 

  81. Rosen, S. C., Weiss K. R., Goldstein, R. S., & Kupfermann, I. (1989). The role of a modulatory neuron in feeding and satiation in Aplysia: Effects of lesioning of the serotonergic metacerebral cells. The Journal of Neuroscience, 9(5), 1562–1578.

    Google Scholar 

  82. Rossini, P. M., & Marsden, C. D. (Ed.). (1988). Non-invasive stimulation of brain and spinal cord: Fundamentals and clinical applications. New York, NY: Alan R. Liss, Inc.

    Google Scholar 

  83. Ryckebusch S., Bower, J. M., & Mead, C. (1989). Modeling small oscillating biological networks in analog VLSI. In D. S. Touretzky (Eds.), Neural Information Processing Systems I (pp. 384–393). San Mateo, CA: Morgan Kaufmann Publishers, Inc.

    Google Scholar 

  84. Salzberg B. M., Grinvald A., Cohen L. B., Davila, H. V., & Ross, W. N. (1977). Optical recording of neuronal activity in an invertebrate central nervous system: simultaneous monitoring of several neurons. Journal of Neurophysiology, 40, 1281–1291.

    Google Scholar 

  85. Salzman C. D., Britten, K. H., & Newsome, W. T. (1990). Cortical microstimulation influences perceptual judgements of motion direction. Nature, 346, 174–177.

    Article  Google Scholar 

  86. Segal, M. M., & Furshpan, E. J. (1990). Epileptiform activity in microcultures containing small numbers of hippocampal neurons. J. Neurophysiol., 64(5), 1390–1399.

    Google Scholar 

  87. Selverston, A. I. (1985). Model Neural Networks and Behavior. New York, NY: Plenum Press.

    Google Scholar 

  88. Skarda, C. A., & Freeman, W. J. (1987). How brains make chaos in order to make sense of the world. Behav. Br. Sci., 10, 161–195.

    Article  Google Scholar 

  89. Stepnoski R. A., LaPorta A., Raccuia-Behling F., Blonder G. E., Slusher, R. E., & Kleinfeld, D. (1991). Noninvasive detection of changes in membrane potential in cultured neurons by light scattering. Proc. Nat. Acad. Sci. USA, 88, 9382–9386.

    Article  Google Scholar 

  90. Tank D. W., Sugimori M., Connor, J. A., & Llinas, R. R. (1988). Spatially resolved calcium dynamics of mammalian purkinje cells in cerebellar slice. Science, 242, 773–777.

    Article  Google Scholar 

  91. Watson, J. B. (1913). Psychology as the behaviorist views it. Psychol. Rev., 20, 158–173.

    Article  Google Scholar 

  92. Weiss K. R., Chiel, H. J., & Kupfermann, I. (1986). Activity of an identified histaminergic neuron, and its possible role in arousal of feeding behavior in semi-intact Aplysia. J. Neurosci., 6(8), 2403–2415.

    Google Scholar 

  93. Wilson, M. A., & Bower, J. M. (1989). The simulation of large-scale neural networks. In C. Koch and I. Seger (Eds.), Methods in Neuronal Modelling (pp. 291–333). Cambridge: The MIT Press.

    Google Scholar 

  94. Wise, S. P. (1985). The primate premotor cortex: Past, present, and preparatory. Annu. Rev. Neurosci., 8, 1–19.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chiel, H.J. (1993). Cognitive Neuroethology: An Approach to Understanding Biological Neural Networks. In: Sterling, L.S. (eds) Intelligent Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-2836-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-2836-4_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-6227-2

  • Online ISBN: 978-1-4615-2836-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics