Skip to main content

Chemical Analysis of Archaea and Bacteria: A Critical Evaluation of its Use in Taxonomy and Identification

  • Chapter
Bacterial Diversity and Systematics

Part of the book series: Federation of European Microbiological Societies Symposium Series ((FEMS,volume 75))

Abstract

I wonder if any task in microbiology can be so fraught with problems, prejudices, wrong information, or plain lack of scientific interest as trying to explain the full potential of the chemical analysis of prokaryotic cells? Our modern taxonomy has at its fingertips an array of powerful tools, and at no time in the history of microbial taxonomy have we been able to approach the subject in such a critical fashion. Despite this, confusion and uncertainty are rife. Much of the confusion, however, lies in very unexpected corners. I cannot help wondering how we continue to read of the “inferior” quality and interpretation of a phenetic taxonomy compared with a “phylogenetic” taxonomy. Yet, despite nearly 20 years of RNA analysis, a closer examination of these data reveals their phenetic origin, and only recently has classical cladistic methodology entered the field. Surely the power of the early analyses, based on Sab values, was its ability to illustrate a novel phonetic basis of prokaryotic taxonomy, which was the result of clearer/simpler markers of the present state of the evolution. Perhaps this is due to the general opinion that a phonetic system is confused with a methodology and philosophy pioneered and championed, among others by Sneath and Sokal (1973). It is not a phenetic data set which “fails” to be “phylogenetic” in its approach, but a particular method, given the name “phenetic taxonomy” or “numerical taxonomy” by various scientists, which did not have phylogeny as its primary objective; “a basic attitude of numerical taxonomists is the strict separation of phylogenetic speculation from taxonomic procedure” (Sneath and Sokal, 1973) . Nor can one criticise “numerical taxonomy” for “failing” to encompass methods other than morphology and biochemical tests when its users so blatantly refrained from even attempting to incorporate other data (sequence data, chemical data) so clearly outlined in the scope of the methodology.

This chapter is dedicated to those chemists who have contributed to prokaryotic taxonomy and our understanding of evolution in a way yet to be fully appreciated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akagawa, M. and Yamasato, K. (1989) Synonymy of Alcaligenes aquamarinns, Alcaligenes faecalis ,sub-sp. homaii ,and Deleya aesta: Deleya aquamarina comb. nov. as the type species of the genus De leya. Int. J. System. Bacteriol. 39: 462–466

    Article  Google Scholar 

  • Amadi, E.N. and Alderson, G. (1992) Lipids of Arthrobacter siderocapsulatus. J. Appl. Bacteriol. 73: 144–147.

    Article  Google Scholar 

  • Aquino de Muro, M. and Priest, F.G. (1993) Phylogenetic analysis of Bacillus sphaericus and develop-ment of an oligonucleotide probe specific for mosquito-pathogenic strains. FEMS Microbiol. Letts. 112:205–210.

    Google Scholar 

  • Ash, C, Farrow, J.A.E., Wallbanks, S., and Collins, M.D. (1991) Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences. Letts Appl. Microbiol. 13: 202–206.

    Article  CAS  Google Scholar 

  • Auling, G., Busse, J., Hahn, M., Hennecke, H., Kroppenstedt, R.M., Probst, A., and Stackebrandt, E. (1988) Phylogenetic heterogeneity and chemotaxonomic properties of certain Gram-negative aero-bic carboxydobacteria. System. Appl. Microbiol. 10: 264–272.

    Article  Google Scholar 

  • Collins, M.D. and Jones, D. (1981) Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implications. Microbiol. Rev., 45: 316–354

    PubMed  CAS  Google Scholar 

  • Cork, D., Mathers, J., Maka, J.,and Srnak, A. (1985) Control of oxidative sulfur metabolism of Chlo-robium limicola forma thiosulfatophilum. Appl. Env. Microbiol. 49: 269–272.

    CAS  Google Scholar 

  • Cowan, ST. (1978) “A Dictionary of Microbial Taxonomy,” Cambridge University Press, Cambridge.

    Google Scholar 

  • Cummins, C.S. and Harris, H. (1956) The chemical composition of the cell wall in some Gram-positive bacteria and its possible value as a taxonomic marker. J. Gen. Microbiol. 14: 583–600

    Article  PubMed  CAS  Google Scholar 

  • Daneshvar, M.I., Hollis, D.G., and Moss, C.W. (1991) Chemical characterisation of clinical isolates which are similar to CDC group DF-3 bacteria. J. Clin. Microbiol. 29: 2351–2353.

    PubMed  CAS  Google Scholar 

  • De Ley, J., (1991) The Proteobacteria: ribosmal RNA cistron similarities and bacterial taxonomy in “The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Ap-plications,” Balows, A., Trüper, H.G., Dworkin, M., Harder, W., and Schleifer, K.H., eds., Springer Verlag, New York.

    Google Scholar 

  • De Ley, J., Park, LW., Tijtgat, R., and Ermengen, J. (1965) DNA homology and taxonomy of Pseudomo-nas mdXanthomonas. J. Gen. Microbiol. 42: 43–56

    Google Scholar 

  • Dees, S.B., Carlone, G.M., Hollis, D., and Moss, C.W. (1985) Chemical and phenotypic characteristics of Flavobacterium thalpophilum compared with those of other Flavobacterium and Sphingobacterium species. Int. J. System. Bacteriol. 35: 16–22.

    Article  CAS  Google Scholar 

  • Dickerson, R.E. (1980) Evolution and gene transfer in purple photosynthetic bacteria. Nature 283: 210–212.

    Article  PubMed  CAS  Google Scholar 

  • Eggen, R.I.L., Geerling, A.C.M., de Groot, P.W.J., Ludwig, W., and de Vos, W.M., 1993 Methanogenic bacterium Gö1: an acetoclastic methanogen that is closely related to Methanosarcina frisia. Sys-tem. Appl. Microbiol. 15: 582–586

    Google Scholar 

  • Farrow, J.A.E., Ash, C., Wallbanks, S., and Collins, M.D. (1992) Phylogenetic analysis of the genera Pla-nococcus, Maiinococcus and Sporosarcina and their relationships to members of the genus Bacil-lus. FEMS Microbiol. Letts. 93: 167–172.

    Article  CAS  Google Scholar 

  • Felsenstein, J. (1988) Phylogenies from molecular sequences, inference and reliability. Ann. Rev. Genetics 22: 521–565

    Article  CAS  Google Scholar 

  • Felsenstein, J. (1988) Perils of molecular introspection. Nature 335: 118

    Article  Google Scholar 

  • Fox, K.F. and Brown, A. (1993) Properties of the genus Tatlockia. Differentiation of Tatlockia(Legionella) maceachernii and micdadei from eachother and from other legionellas. Can. J. Micro-biol. 39: 486–491.

    Article  CAS  Google Scholar 

  • Franzmann, P.D. and Tindall, B.J. (1990) A chemotaxonomic study of members of the family Halomona-daceae. System. Appl. Microbiol. 13: 142–147

    Article  CAS  Google Scholar 

  • Fuerst, J.A., Hawkins, JA., Holmes, A. Sly, L.I., Moore, C.J., and Stackebrandt, E. (1993) Porphyro-bacter neustonensis gen. nov., sp. nov., an aerobic bacteriochlorophyll-synthesising budding bacter-ium from fresh water. Int. J. System. Bacteriol. 43: 125-134.

    Article  CAS  Google Scholar 

  • Gherna, R. and Woese, C.R. (1992) A partial phylogenetic analysis of the “Flavobacter-Bacteroides” phylum: basis for taxonomic restructuring. System. Appl. Microbiol. 15: 513–521.

    Article  CAS  Google Scholar 

  • Goodfellow, M. and O’Donnell, A.G. (1993) Roots of bacterial systematics in “Handbook of New Bac-terial Systematics,” Goodfellow, M. and O’Donnell, A.G. eds, Academic Press, London

    Google Scholar 

  • Govindaswami, M., Schmidt, T.M., White, DC, and Loper, J.C. (1993) Phylogenetic analysis of a bacter-ial aerobic degrader of azo dyes. J. Bacteriol. 175: 6062–6066

    PubMed  CAS  Google Scholar 

  • Grimont, P.A.D., Popoff, MY., Grimont, F., Coynault, C, and Lemelin, M. (1980) Reproducibility and correlation of three deoxyribonucleic hybridisation procedures. Curr. Microbiol. 4: 325–330

    Article  CAS  Google Scholar 

  • Head, I.M., Hiorns, W.D., Embley, T.M., McCarthy, A.J., and Saunders, J.R. (1993) The phylogeny of autotrophic ammonia-oxidising bacteria as determined by analysis of 16S ribosomal gene se-quences. J. Gen. Microbiol. 136: 1147–1153.

    Google Scholar 

  • Hiraishi, A., Shin, Y.K., Sugiyama, J., and Komagata, K. (1992) Isoprenoid quinones and fatty acids of Zoogloea. 61: 231–236.

    CAS  Google Scholar 

  • Horbach, S., Sahm, H., and Welle, R. (1993) Isoprenoid biosynthesis in bacteria: two different pathways? FEMS Microbiol. Letts. Ill: 135–140.

    Article  Google Scholar 

  • Huss, V.A.R., Festl, H., and Schleifer, K.H. (1983) Studies on the spectrophotometric determination of DNA hybridisation from renaturation rates. System. Appl. Microbiol. 4: 184–192

    Article  CAS  Google Scholar 

  • Ikawa, M. (1967) Bacterial phosphatides and natural relationships. Bacteriol. Rev. 31: 54–64

    PubMed  CAS  Google Scholar 

  • In ’t Veld, G., Driessen, A.J.M., and Konings, W.N. (1993) Bacterial solute transport proteins in their lipid environment. FEMS Microbiol. Rev. 12: 293–314

    Article  PubMed  CAS  Google Scholar 

  • Juni, E. and Heym, G.A. (1986) Psychrobacter immobilis gen. nov., sp. nov.: genospecies composed of Gram-negative, aerobic, oxidase-positive coccobacilli. Int. J. System. Bacteriol. 36: 388–391

    Article  Google Scholar 

  • Kamekura, M. and Seno, Y. (1993) Partial sequence of the gene for a serine protease from a halophilic ar-chaeum Haloferax mediterranei R4, and nucleotide sequences of 16S rRNA encoding genes from several halophilic archaea. Experientia 49: 503–512

    Article  PubMed  CAS  Google Scholar 

  • Kandier, O. (1993) The early diversification of life, in “Early Life on Earth,” Bengston, S. ed., Nobel Sym-posium 84, Columbia University Press, New York

    Google Scholar 

  • Kandier, O. and König, H. (1978) Chemical composition of the peptidoglycan-free cell walls of methano-genic bacteria. Archiv. Microbiol. 118: 141–152

    Article  Google Scholar 

  • Kawasaki, H., Hoshino,Y., and Yamasato, K. (1992) Phylogenetic diversity of phototrophic purple non-sulfiir bacteria in the Proteobacteria group. FEMS Microbiol. Letts. 112: 61–66.

    Google Scholar 

  • Kersters, K. (1991) The genus Deleya ,in “The Prokaryotes. A Handbook on the Biology of Bacteria: Eco-physiology, Isolation, Identification, Applications,” Balows, A., Trüper, H.G., Dworkin, M., Harder, W., and Schleifer, K.H. eds., Spinger Verlag, New York.

    Google Scholar 

  • Lawson, P.A., Gharbia, S.E., Shah, H.N., Clark, DR., and Collins, M.D. (1991) Intrageneric relationships of members of the genus Fusobacterium as determined by reverse transcriptase sequencing of small-subunit rRNA. Int. J. System. Bacteriol. 41: 347–354

    Article  CAS  Google Scholar 

  • Lechevalier, M.P., De-Bievre, C., and Lechevalier, H.A. (1977) Chemotaxonomy of aerobic actinomy-cetes: phospholipid composition. Biochem. System. Ecol. 5:249–260

    Article  CAS  Google Scholar 

  • Lee, Y.-E., Jain, M.K., Lee, C, Lowe, S.E., and Zeikus, J.G. (1993) Taxonomic distinction of saccharoly-tic thermophilic anaerobes: description of Thermoanaerobacterium xylanolyticum gen. nov., sp. nov., and Thermoanaerobacterium sac charolyticum gen. nov., sp. nov.; reclassification of Thermo-anaerobium brockii, Closttidium thermosulfurogenes ,and C ìostridium thermohydrsulfuricum El00-69 as Thermoanaerobacter brockii comb. nov., Thermoanaerobacterium thermosulfimgenes comb. nov., and Thermo-anaerobacter thennohydrosufuricus comb, nov., respectively; and transfer of Ciostridium thermohydrosulfuricum 39E to Thermoanaerobacter ethanolicus. Int. J. System. Bacteriol. 43: 41–51

    Article  Google Scholar 

  • Ludwig, W., Mittenhuber, G., and Friedrich, C.G. (1993) Transfer of Thiosphaera pantotropha to Para-coccus denitrificans. Int. J. System. Bacteriol. 43: 363–367.

    Article  CAS  Google Scholar 

  • Manz, W., Amann, R., Ludwig, W., Wagner, M., and Schleifer, K.H. (1992) Phylogenetic oligonucleotide probes for the major subclasses of the Proteobacteria: problems and solutions. System. Appl. Micro-biol. 15: 593–600

    Article  Google Scholar 

  • Martinez-Murcia, A.J., and Collins, M.D. (1991) A phylogenetic analysis of an atypical leuconostoc: de-scription of leuconostoc fallax sp. nov. FEMS Microbiol. Letts. 82: 55-60

    Article  CAS  Google Scholar 

  • Martinez-Murcia, A.J., Benlloch, S., and Collins, M.D. (1992) Phylogenetic interrelationships of members of the genera Aeromonas and Pleisiomonas as determined by 16S ribosomal DNA sequencing: lack of congruence with results of DNA-DNA hybridisations. Int. J. System. Bacteriol. 42: 412–421.

    Article  CAS  Google Scholar 

  • Mayr. E. (1942) “Systematics and the Origin of Species,” Columbia University Press, New York.

    Google Scholar 

  • Mendala, B. (1990) MIDI Technical note 103, MIDI Newark.

    Google Scholar 

  • Minnikin, D.E. and Abdolrahimzadeh, H. (1974) The replacement of phosphatidyl ethanolamine and acidic phospholipids by an ornithine-amide lipid and a minor phosphorus-free lipid in Pseudomonas fluorescens NCMB 129. FEBS Letts. 43: 257–260

    Article  CAS  Google Scholar 

  • Minnikin, D.E. and Goodfellow, M. (1981) Lipids in the classification of Bacillus and related taxa, in “The Aerobic Endosporeforming Bacteria,” Berkeley, R.C. and Goodfellow, M., eds Academic Press, London

    Google Scholar 

  • Moss, C.W., Holzer, G., Wallace, PL., and Hollis, D.G. (1990) Cellular fatty acid compositions of an un-identified organism and a bacterium associated with cat scratch disease. J. Clin. Microbiol. 28: 1071–1074.

    PubMed  CAS  Google Scholar 

  • Mylvaganam, S. and Dennis. P.P. (1992) Sequence heterogeneity between the two genes encoding 16S rRNA from the halophilic archaebacterium Haloarcula marismortui. Genetics 130: 399–410.

    PubMed  CAS  Google Scholar 

  • Niebel, H., Dorsch, M., and Stackebrandt, E. (1987) Cloning and expression of Proteus vulgaris genes for 16S ribosomal RNA. J. Gen. Microbiol. 133: 2401–2409

    PubMed  CAS  Google Scholar 

  • Nölling, J., Hahn, D., Ludwig, W., and de Vos, W.M. (1993) Phylogenetic analysis of thermophilic Me-thanobacterium sp.: evidence for a formate utilising ancestor. System. Appl. Microbiol. 16: 208–215

    Article  Google Scholar 

  • van Niel, C.B. (1966) Microbiology and molecular biology. Quart. Rev. Biol. 41: 105–112.

    Article  PubMed  Google Scholar 

  • O’Donnell, A.G., Embley, T.M., and Goodfellow, M. (1993) Future bacterial systematics in “Handbook of New Bacterial Systematics,” Goodfellow, M. and O’Donnell, A.G. eds, Academic Press, London

    Google Scholar 

  • Ohara, M., Katayama, Y., Tsuzaki, M., Nakamoto, S., and Kuraishi, H. (1990) Paracoccus kocurii sp. nov., a tetramethylammonium-assimilating bacterium. Int. J. System. Appl. 40: 292–296

    CAS  Google Scholar 

  • Olson, G., Woese, C.R., and Overbeek, R. (1994) The winds of (evolutionary) change: breathing new life into microbiology. J. Bacteriol. 176: 1–6

    Google Scholar 

  • Pasteur, B.J., Ludwig, W , Weisburg, W.G., Stackebrandt, E., Hespell, R.B., Hahn, CM., Reichenbach, H., Stetter, K.O., and Woese, C.R. (1985) A phylogenetic grouping of the bacteroides, cytophagas, and certain flavobacteria. System. Appl. Microbiol. 6: 34–42

    Article  Google Scholar 

  • Pieringer, R.A. (1989) Biosynthesis of non-terpenoids, in “Microbial Lipids” vol. 2, Ratledge, C and Wilkinson, S.G., eds, Academic Press, London.

    Google Scholar 

  • Rainey, F., A., Ward, N.L., Morgan, H.W., Taolster, R., and Stackebrandt, E. (1993) Phylogenetic analy-sis of anaerobic thermophilic bacteria: aid for their reclassification. J. Bacteriol. 175: 4772–4779

    PubMed  CAS  Google Scholar 

  • Rivera, M.C. and Lake, JA. (1992) Evidence that eukaryotes and eocyte prokaryotes are immediate rela-tives. Science 257: 74–76

    Article  PubMed  CAS  Google Scholar 

  • Rosselló-Mora, R.A., Ludwig, W., and Schleifer, K.H. (1993) Zoogloea ramigera: a phylogenetically di-verse species. FEMS Microbiol. Letts. 114: 129–134

    Article  Google Scholar 

  • Rotert, K.R., Toste, A.P., and Steiert, J.G. (1993) Membrane fatty acid analysis of Antarctic bacteria. FEMS Microbiol. Letts. 114: 253–258

    Article  CAS  Google Scholar 

  • Schleifer, K.H. and Stackebrandt, E. (1983) Molecular systematics of prokaryotes. Ann. Rev. Microbiol. 37: 143–187

    Article  CAS  Google Scholar 

  • Schleifer, K.H., Amann, R., Ludwig, W., Rothemund. C, Springer, N., and Dorn, S. (1992) Nucleic acid probes for the identification and in situ detection of pseudomonads, in ”Pseudomonas ,molecular biology and biotechnology,” Galli, E., Silver, S., and Witholt, B. eds. American Society for Microbiology, Washington.

    Google Scholar 

  • Schweizer, E. (1989) Biochemistry of lipids, in “Microbial Lipids” vol. 2, Ratledge, C. and Wilkinson, S.G., eds, Academic Press, London.

    Google Scholar 

  • Shaw, N. (1970) Bacterial Glycolipids. Bacteriol. Rev. 34: 365–377.

    PubMed  CAS  Google Scholar 

  • Shaw, N. (1974) Lipid composition as a guide to the classification of bacteria. Adv. Appl. Microbiol. 17: 63–108

    Article  PubMed  CAS  Google Scholar 

  • Shin, Y.K., Hiraishi, A., and Sugiyama, J. (1993) Molecular systematics of the genus Zoogloeam á emendation of the genus. Int. J. System. Bacteriol. 43: 826–831

    Article  CAS  Google Scholar 

  • Sittig, M. and Hirsch, P. (1992) Chemotaxonomic investigations of budding and/or hyphal bacteria. Sys-tem. Appl. Microbiol. 15: 209–222.

    Article  CAS  Google Scholar 

  • Sittig, M. and Schlesner, H. (1993) Chemotaxonomic investigations of various prosthecate and/or budding bacteria. System. Appl. Microbiol 16: 92–103.

    Article  CAS  Google Scholar 

  • Sneath, PH. A. (1989) Analysis and interpretation of sequence data for bacteria systematics: the view of a numerical taxonomist. System. Appl. Microbiol. 12: 15–31.

    Article  Google Scholar 

  • Sneath, P.H.A. and Sokal, R.R. (1973) “Numerical Taxonomy” W.H.Freeman and Company, San Francisco.

    Google Scholar 

  • Speck, H., Kroppenstedt, R.M., and Mannheim, W. (1987) Genomic relationships and species differenti-ation in the genus Capnocytophaga. Zentralblt. Bakteriol. Hyg. A 226: 390–402.

    Google Scholar 

  • Stackebrandt, E. and Goodfellow, M. (1991) Introduction in “Nucleic Acid Techniques in Bacterial Sys-tematics,” Stackebrandt, E. and Goofellow, M. eds., Wiley, London

    Google Scholar 

  • Stahl, D.A., Key, R., Flesher, B., and Smit, J. (1992) The phylogeny of marine and freshwater caulo-bacters reflects their habitat. J. Bacteriol. 174: 2193–2198

    PubMed  CAS  Google Scholar 

  • Sutton, G.C., Russell, N.J., and Quinn, P.J. (1991) The effect of salinity on the phase behaviour of total lipid extracts and binary mixtures of the major phospholipids isolated from a moderately halophilic bacterium. Biochim. Biophys. Acta. 1061: 235–246

    Article  PubMed  CAS  Google Scholar 

  • Suwanto, A. and Kaplan, S. (1992) Chromosome transfer in Rhodobacter sphaeroides: Hfr formation and genetic evidence for two unique circular chromosomes. J. Bacteriol. 174: 1135–1145

    PubMed  CAS  Google Scholar 

  • Suzuki, K.-L, Saito, K., Kawaguchi, A., Okuda, S., and Komagata, K. (1981) Occurrence of ohcyclohexyl fatty acids in Curtobactetium pusillum strains. J. Gen. Microbiol. 27: 261–266

    Article  CAS  Google Scholar 

  • Suzuki, K.-I., Goodfellow, M., and O’Donnell, A.G. (1993) Cell envelopes and classification in “Hand-book of New Bacterial Systematics,” Goodfellow, M. and O’Donnell, A.G. eds, Academic Press, London

    Google Scholar 

  • Suzuki, T. and Yamasato, K, 1993 Phylogeny of spore-formimg lactic acid bacteria based on 16S rRNA gene sequences. FEMS Microbiol. Letts. 115: 13–18

    Article  Google Scholar 

  • Tindall, B.J. (1991) The family Halobacteriaceae, in “The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications,” Balows, A., Trüper, KG., Dwor-kin, M., Harder, W., and Schleifer, K.H., eds., Springer Verlag, New York.

    Google Scholar 

  • Tornabene, T.G., Wolfe, R.S., Balch, W.E., Hölzer, G., Fox., G.E., and Oro, J. (1978) Phytanyl-glycerol ethers and squalenes in the archaebacterium Methanobacîeríum thernioautotrophicum. J. Molec. Evol. 11: 259–266

    Article  PubMed  CAS  Google Scholar 

  • Touzel, J.P., Conway de Macario, E., Nölling, J., de Vos, W.M., Zhilina, T., and Lysosenko, A.M. (1992) DNA relatedness among some thermophilic members of the genus Methanobacterium: emendation of the species Methanobacterium thernioautotrophicum and rejection of Methanobacterium thermo-formicicum as a synonym of Methanobacterium thermoautotrophicum. Int. J. System. Bacteriol. 42: 408-411

    Google Scholar 

  • Trüper, H.G. and Schleifer, K.H. (1991) Prokaryote characterisation and identification, in “The Prokary-otes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications,” Balows, A., Trüper, H.G., Dworkin, M., Harder, W., and Schleifer, K.H., eds., Springer Verlag, New York.

    Google Scholar 

  • Traniger, V. and Boos, W. (1993) Glycerol uptake in Escherichia coli is sensitive to membrane lipid com-position. Res. Microbiol. 144: 565–574

    Article  Google Scholar 

  • Tsuji, K., Tsien, H.C., Hanson, R.S., DePalma, S.R., Scholtz, R., and LaRoche, S. (1990) 16S ribosomal RNA sequence analysis for determination of phylogenetic relationship among methylotrophs. J. Gen. Microbiol. 136: 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Urakami, T., Tamaoka, J., Suzuki, K.-I’, and Komagata, K. (1989) Paracoccus alcaliphilus sp. nov., an alkaliphilic and facultatively methylotrophic bacterium. Int. J. System. Bacteriol. 39: 116–121

    Article  Google Scholar 

  • Urakami, T., Araki, H., Oyanagi, H., Suzuki, K.-I., and Komagata, K., 1990 Paracoccus aminophilus sp. nov. and Paracoccus aminovorans sp. nov., which utilize N,N-dimethyloformamide. Int. J. System. Bacteriol. 39: 116–121

    Article  Google Scholar 

  • Willems, A. and Collins, M.D. (1992) Evidence for a close genealogical relationship between Afipia (the causal organism of cat sratch disease), Bradyrhizobium japonicum and Blastobacter denitriflcans. FEMS Microbiol. Letts. 96:241–246.

    Article  CAS  Google Scholar 

  • Wilkinson, S.G. (1968) Studies on the cell walls of Pseudomonas species resistant to ethylenediaminetetra-acetic acid. J. Gen. Microbiol. 54: 195–213.

    Article  PubMed  CAS  Google Scholar 

  • Wilkinson, S.G. (1989) Gram-negative bacteria, in “Microbial Lipids” vol. 2, Ratledge, C. and Wilkinson, S.G., eds, Academic Press, London.

    Google Scholar 

  • Wisotzkey, J.D., Jurshuk, P., Fox, G.E., Deinhard, G., and Poralla, K. (1992) Comparative sequence analy-ses on the 16S rRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidotenestris ,and Bacillus cycloheptanicus and proposal for the creation of a new genus Allicyclobacillus gen. nov. Int. J. Sys-tem. Bacteriol. 42: 263–269

    Article  CAS  Google Scholar 

  • Woese, C.R. (1987) Bacterial evolution. Microbiol. Rev. 51: 221–271.

    PubMed  CAS  Google Scholar 

  • Woese, C.R., Gibson, J., and Fox, G.E. (1980) Do genealogical patterns in purple photosynthetic bacteria reflect intraspecific gene transfer? Nature 283: 212–214.

    Article  PubMed  CAS  Google Scholar 

  • Woese, C.R., Blanz, P., and Hahn, C.M. (1984) What isn’t a pseudomonad: the importance of nomencla-ture in bacterial classification. System. Appl. Microbiol. 5: 179–195.

    Article  CAS  Google Scholar 

  • Wolfe, R.S. (1991) My kind of biology. Ann. Rev. Microbiol. 45: 1–35.

    Article  CAS  Google Scholar 

  • Yanagi, M. and Yamasato, K. (1993) Phylogenetic analysis of the family Rhizobiaceae and related bacter-ia by sequencing of 16S rRNA gene using PCR and DNA sequencer. FEMS Microbiol. Letts. 107: 115–120.

    Article  CAS  Google Scholar 

  • Zuckerkandl, E. and Pauling, L. (1965) Molecules as documents of evolutionary history. J. Theor. Biol. 8: 357–366

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Tindall, B.J. (1994). Chemical Analysis of Archaea and Bacteria: A Critical Evaluation of its Use in Taxonomy and Identification. In: Priest, F.G., Ramos-Cormenzana, A., Tindall, B.J. (eds) Bacterial Diversity and Systematics. Federation of European Microbiological Societies Symposium Series, vol 75. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1869-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-1869-3_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5760-5

  • Online ISBN: 978-1-4615-1869-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics