Skip to main content

Involvement of Peroxynitrite on the Early Loss of P450 in Short-Term Hepatocyte Cultures

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 500))

Summary

The biological chemistry of nitric oxide (NO) in the oxygenated cellular environment is extremely complex. It involves the direct interaction of NO with specific biomolecules and the so-called indirect effects, due to secondary more potent oxidant species derived from NO which are also able to react with DNA, lipids, thiols and transition metals (Wink et al. 1996; Nathan, 1992). In addition to its regulatory role as a signalling molecule (Nathan, 1992; Moncada and Palmer, 1991) it has become evident that NO (or NO-derived species) is a critical factor involved in various toxicological mechanisms (Wink et al. 1996; Wang et al. 1998; Estevez et al. 1999; Wink et al. 1999). Some controversy exists however about the damaging vs protective actions of NO on oxidative injury, whose biological significance in living cells and tissues remains still ill defined. Research in this laboratory (López-García, 1998; López-García and Sanz-Gonzalez, 2000) has shown that NO synthesis is significantly activated in hepatocytes from control rats following isolation by the classical collagenase-based procedure. NO overproduction appears to be due to the very early activation of liver constitutive Ca2+-dependent NO synthase (cNOS). Previous results have also provided first experimental evidence for the direct involvement of endogenously generated NO as a causal factor responsible for important phenotypic changes commonly observed in short-term cultured hepatocytes, which includes the early impairment of hepatocyte mitochondrial function -i.e., transient cell energy depletion-and glucose metabolism, and the well-known quick and irreversible loss of P450 content (López et al 1987; López-García, 1998). This study aims to further characterise the mechanisms underlying this phenomenon.

Results show that the hepatocyte isolation procedure (the commonly employed collagenase-based two step liver perfusion method) induces strong oxidative stress that lasts for at least 4 h in culture and involves both oxygen-derived (ROS) and nitrogen-derived (RNS) reactive species. On the basis of the combined use of dihydrorhodamine 123 (DHR) as a probe and L-NAME (NG-nitro-L-arginine methyl ester) to efficiently block NO synthesis, the analysis of the amount, the time-course pattern, and the nature of the species involved support the view that peroxynitrite* (PN) is readily formed within the early culture hours. Immunodetection of protein bound 3-nitrotyrosine provides direct evidence for PN generation upon hepatocyte isolation: several nitrated protein bands -most already present after only 30 min ofliver perfusion and quantitatively increasing for the first 2 hours in culture-have been identified as preferential PN protein targets in the different cellular compartments. Since the early inhibition of NO synthesis is enough to provide full maintenance of the hepatocyte initial P450 content, results support the view that PN -while not affecting cell viability and monolayer development-is the main species likely responsible for the early loss ofP450 in short-term cultured hepatocytes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Estevez, A.G., Spear, N., Pelluffo, H., Kamaid, A., Barbeito, L. and Beckman, J.S., Examining apoptosis in cultured cells after exposure to nitric oxide and peroxynitrite, 1999 Methods Enzymol 301, 393–402.

    Article  PubMed  CAS  Google Scholar 

  • Ischiropoulos, H., Gow, A., Thom, S.R., Kooy, N.W., Royall, J.A. and Crow, J.P., 1999, Detection of reactive nitrogen species using 2,7-dichlorodihydrofluorescein and dihydrorhodamine 123, Methods Enzymol. 301, 367–373.

    Article  PubMed  CAS  Google Scholar 

  • Lopez, M.P., Gómez-Lechón, M.J. and Castell, J.V., 1988, Active glycolysis and glycogenolysis in early stages of primary cultured hepatocytes. Role of AMP and fructose 2,6-bisphosphate In Vitro Cell. Dey. Biol 24, 51 1–517.

    Google Scholar 

  • López-García, M.P., 1998, Endogenous nitric oxide is responsible for the early loss of P450 in cultured rat hepatocytes FEBS Lett 438, 145–149.

    Article  PubMed  Google Scholar 

  • López-García, M.P. and Sanz-Gonzalez, S.M., 2000, Peroxynitrite generated from constitutive nitric oxide synthase mediates the early biochemical injury in short-term cultured hepatocytes FEBS Lett 466, 187–191.

    Article  PubMed  Google Scholar 

  • Moncada, S, Palmer, R.M.J. and Higgs, E.A., 1991,Nitric oxide: physiology, phatophysiology, and pharmacology Pharmacol. Rev 43, 109–142.

    PubMed  CAS  Google Scholar 

  • Nathan, C., 1992, Nitric oxide as a secretory product of mammalian cells FASEB J 6, 3051–3064.

    PubMed  CAS  Google Scholar 

  • Wang, Y.J., Ho, Y.S., Pan, M.H. and Lin, J.K., 1998, Mechanisms of cell death induced by nitric oxide and peroxynitrite in Calu-1 Cells? Environ. Toxicol. Pharmacol 6,35–44.

    Article  PubMed  Google Scholar 

  • Wink, D.A., Grisham, M.B., Mitchell, J.B. and Ford, P.C., 1996, Direct and indirect effects of nitric oxide in chemical reactions relevant to biology? Methods Enzymol 268, 13–31.

    Google Scholar 

  • Wink, D.A., Vodovotz, Y., Grisham, M.B., DeGraff, W., Cook, J.C., Pacelli, R., Krishna, M. and Mitchell, J.B., 1999 Methods Enzymol 301, 413–424.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vernia, S., Sanz-González, S.M., López-García, M.P. (2001). Involvement of Peroxynitrite on the Early Loss of P450 in Short-Term Hepatocyte Cultures. In: Dansette, P.M., et al. Biological Reactive Intermediates VI. Advances in Experimental Medicine and Biology, vol 500. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0667-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0667-6_28

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5185-6

  • Online ISBN: 978-1-4615-0667-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics