Skip to main content

Electron Collision Processes in Nitrogen Trifluoride

  • Chapter
Gaseous Dielectrics IX

Abstract

Nitrogen trifluoride is used extensively in several aspects of semiconductor processing and manufacture and was also employed as an atomic fluorine source in pulsed electrical-chemical lasers. The electron collision database is of interest for modeling and simulation of plasma enhanced etching of materials. We have recently made comprehensive measurements of the absolute dissociative ionization cross-sections of nitrogen trifluoride and also of its dissociative charge transfer from argon ions. These results are reviewed and compared with previous data in the literature. We also compile, where available, the results for electron attachment, momentum transfer, vibrational excitation, and dissociative excitation. This data set is compared with the results from swarm experiments for mixtures of NF3-argon and NF3-nitrogen. The needs and opportunities for additional experimental studies are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. J.A. Barkanic et al., Solid State Technol April (1989) 109.

    Google Scholar 

  2. G. Bruno, P. Capezzuto, G. Cicala, P. Manodoro, J. Vac. Sci. Technol, 12, (1994) 690.

    Google Scholar 

  3. K.E., Greenberg, J.T. Verdeyen, Appl. Phys., 57, (1985) 1696.

    Google Scholar 

  4. J. Perrin, J. Meot, J. Siefert, J. Schmitt, Plasma Chem. Plasma Process., 10, (1990) 571.

    Article  Google Scholar 

  5. P.J. Chantry, in Applied Atomic Collision Physics, H.S.W., Massey, E.W. McDaniel, B. Bederson, Eds.;Academic Press, New York, 1982, Vol. 3.

    Google Scholar 

  6. T.N. Rescigno, Phys. Rev. A, 52 (1995) 329.

    Article  Google Scholar 

  7. V.K. Lakdawala, J.L. Moruzzi, J. Phys. D: Appl. Phys., 13 (1980) 377.

    Article  Google Scholar 

  8. H. Baumgartel, H.W. Jochims, E. Ruhl, H. Bock, R. Dammel, J. Minkwitz, R. Nass, Inorg. Chem. 28, (1989), 943.

    Article  Google Scholar 

  9. S.A. Rogers, P.J. Miller, S.R. Leone, Chem. Phys. Lett., 166 (1990) 137.

    Article  Google Scholar 

  10. V. Tarnovsky, A. Levin, K. Becker, R. Basner, M. Schmidt, Int. J. Mass Spectrom. Ion Processes, 133 (1994)175.

    Article  Google Scholar 

  11. H. Deutsch, K. Becker, S. Matt, T.D. Mark, Int. J. Mass Spectrom., 197 (2000) 37.

    Article  Google Scholar 

  12. W.Huo (NASA Marshall Space Flight Center), personal communication. Also see:http://www.ipt.arc.nasa.gov/databasel.html, January, 2001.

    Google Scholar 

  13. R. Reese, V.H. Dibeler, J. Chem. Phys., 24 (1956), 1175.

    Article  Google Scholar 

  14. P.W. Harland, J.L. Franklin, J. Chem. Phys. 61 (1974) 1621.

    Article  Google Scholar 

  15. G.D. Sides, T.O. Tiernan, J. Chem. Phys. 67, (1977) 2382.

    Article  Google Scholar 

  16. P.J. Chantry, Westinghouse Technical Report, 1978, 78–926, ATACH-R1.

    Google Scholar 

  17. D.W. Trainor, J.H. Jacob, Appl. Phys. Lett. 35 (1979) 920.

    Article  Google Scholar 

  18. S. Ushiroda, S. Kajita, Y. Kondo, J. Phys. D. appl. Phys., 23 (1990) 47.

    Article  Google Scholar 

  19. N. Ruckhaberle, L. Lehmann, S. Matejcik, E. Illenberger, Y. Bouteiller, V. Periquet, L. Museur, C.Desfrancois, J.-P. Schermann, J. Phys. Chem. A 101 (1997) 9942.

    Article  Google Scholar 

  20. K.J. Nygaard, H.L. Brooks, S.R. Hunter, IEEEJ. Quantum Electron. QE15 (1979) 1216.

    Article  Google Scholar 

  21. K.G. Mothes, E. Schultes, R.N. Schindler, J. Phys. Chem., 76 (1972) 3758.

    Article  Google Scholar 

  22. M.J. Shaw, J.D.C. Jones, Appl. Phys. 14 (1977) 393.

    Article  Google Scholar 

  23. J.C.J. Thynne, J. Phys. Chem., 73 (1969) 1586.

    Article  Google Scholar 

  24. M.B. Roque, R.B. Siegel, K.E. Martus, V. Tarnovsky, K. Becker, J. Chem. Phys. 94 (1991) 341.

    Article  Google Scholar 

  25. L. Boesten, Y. Tachibana, Y. Nakano, T. Shinohara, H. Tanaka, M.A. Dillon, J. Phys. B: At. Mol. Opt. Phys., 29 (1996) 5475.

    Article  Google Scholar 

  26. N.A. Dyatko, A.P. Napartovich, J. Phys. D. Appl. Phys. 32 (1999), 3169.

    Article  Google Scholar 

  27. K.A. Blanks, K. Becker, J. Phys. B: At. Mol. Phys. 20 (1987) 6157.

    Article  Google Scholar 

  28. K.A. Blanks, A.E. Tabor, K. Becker, J. Chem. Phys., 86 (1987) 4871.

    Article  Google Scholar 

  29. Z.J. Jabbour, K.A. Blanks, K.E. Martus, K. Becker, J. Chem. Phys. 88 (1988) 4252.

    Article  Google Scholar 

  30. K.A. Blanks, A.E. Tabor, K. Becker, Int. Conf. On Physics of Electronic and Atomic Collisions (Brighton), 1989, p 347.

    Google Scholar 

  31. M.B. Roque, R.B. Siegel, K.E. Martus, V. Tarnovsky, K. Becker, J. Chem. Phys. 94 (1991) 341.

    Article  Google Scholar 

  32. K. Riehl, Collisional Detachment of Negative Ions Using FTMS, Ph.D. Thesis, Air Force Institute of Technology, Wright-Patterson AFB, 1992.

    Google Scholar 

  33. P.D. Haaland, Chem. Phys. Lett., 170 (1990) 146.

    Article  Google Scholar 

  34. A. G. Marshall, T. L. Wang, T. L. Ricca, J. Am. Chem. Soc. 107 (1985) 7893.

    Article  Google Scholar 

  35. S. Guan, J. Chem. Phys. 91 (1989) 775.

    Article  Google Scholar 

  36. Z. Liang, A. G. Marshall, Anal. Chem. 62 (1990), 70.

    Article  Google Scholar 

  37. P. Haaland, J. Chem. Phys. 93 (1990), 4066.

    Article  Google Scholar 

  38. R. C. Wetzel, F. A. Baioochi, T. R. Hayes, R. S. Freund, Phys. Rev. 35 (1987) 559.

    Article  Google Scholar 

  39. H.M. Rosenstock, K. Draxl, B.W. Stiner, J.T. Herron, Energetics of Gaseous Ions Journal of Physical and Chemical Reference Data, 1977, vol. 6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media New York

About this chapter

Cite this chapter

Jiao, C.Q., DeJoseph, C.A., Haaland, P.D., Garscadden, A. (2001). Electron Collision Processes in Nitrogen Trifluoride. In: Christophorou, L.G., Olthoff, J.K. (eds) Gaseous Dielectrics IX. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-0583-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4615-0583-9_17

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-5143-6

  • Online ISBN: 978-1-4615-0583-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics