Skip to main content

Gravitational Two-Body Problem

  • Chapter
  • First Online:
  • 121k Accesses

Part of the book series: Undergraduate Lecture Notes in Physics ((ULNP))

Abstract

In Chap. 3 we assumed the source of gravity is stationary and only one object moves. Now we are ready to study what happens when both objects are free to move. As we will see, there is a deep connection between the one-body and two-body problems that provides a powerful opportunity to understand binary star systems and extrasolar planets.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    With help from Mathematica [1].

  2. 2.

    In Chap. 14 we study spectral lines created by atoms and molecules in the outer layers of stars.

  3. 3.

    Strictly speaking, we measure angles on the spherical sky. If the angular extent of a system is small, we can project onto a plane tangent to the sphere to obtain Euclidean coordinates without making a significant error.

  4. 4.

    Recall from Sect. 4.1.4 that we can determine e from the shape of the velocity curves.

  5. 5.

    By convention, planets are named by appending letters starting with “b” to the name of the star. For example, HD 209458b is a planet orbiting the star HD 209458.

  6. 6.

    We follow common practice and quote planet densities in CGS rather than MKS units because densities are of order unity in g cm−3. For example, water has a density of 1 g cm−3 at standard temperature and pressure on Earth, while rocks and metals have densities of several g cm−3. Earth’s average density is about 5.5 g cm−3.

  7. 7.

    We defer our own study of atmospheric physics to Chaps. 12 and 13; here we briefly summarize recent work on exoplanets.

References

  1. Wolfram Research, Inc., Mathematica, 8th edn. (Wolfram Research, Champaign, 2010)

    Google Scholar 

  2. G.W. Marcy, R.P. Butler, E. Williams, L. Bildsten, J.R. Graham, A.M. Ghez, J.G. Jernigan, Astrophys. J. 481, 926 (1997)

    Article  ADS  Google Scholar 

  3. M. Mayor, D. Queloz, Nature 378, 355 (1995)

    Article  ADS  Google Scholar 

  4. R.P. Butler, J.T. Wright, G.W. Marcy, D.A. Fischer, S.S. Vogt, C.G. Tinney, H.R.A. Jones, B.D. Carter, J.A. Johnson, C. McCarthy, A.J. Penny, Astrophys. J. 646, 505 (2006)

    Article  ADS  Google Scholar 

  5. G.W. Henry, G.W. Marcy, R.P. Butler, S.S. Vogt, Astrophys. J. Lett. 529, L41 (2000)

    Article  ADS  Google Scholar 

  6. D. Charbonneau, T.M. Brown, D.W. Latham, M. Mayor, Astrophys. J. Lett. 529, L45 (2000)

    Article  ADS  Google Scholar 

  7. T.M. Brown, D. Charbonneau, R.L. Gilliland, R.W. Noyes, A. Burrows, Astrophys. J. 552, 699 (2001)

    Article  ADS  Google Scholar 

  8. G. Torres, J.N. Winn, M.J. Holman, Astrophys. J. 677, 1324 (2008)

    Article  ADS  Google Scholar 

  9. M. Mayor, D. Queloz, New Astron. Rev. 56, 19 (2012)

    Article  ADS  Google Scholar 

  10. C. Lovis et al., Astron. Astrophys. 528, A112 (2011)

    Article  ADS  Google Scholar 

  11. T. Barclay et al., Nature 494, 452 (2013)

    Article  ADS  Google Scholar 

  12. J.J. Lissauer et al., Nature 470, 53 (2011)

    Article  ADS  Google Scholar 

  13. L.R. Doyle et al., Science 333, 1602 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  14. W.F. Welsh et al., Nature 481, 475 (2012)

    Article  ADS  Google Scholar 

  15. N.M. Batalha et al., Astrophys. J. 729, 27 (2011)

    Article  ADS  Google Scholar 

  16. D. Charbonneau, T.M. Brown, R.W. Noyes, R.L. Gilliland, Astrophys. J. 568, 377 (2002)

    Article  ADS  Google Scholar 

  17. J. Harrington, B.M. Hansen, S.H. Luszcz, S. Seager, D. Deming, K. Menou, J.Y.K. Cho, L.J. Richardson, Science 314, 623 (2006)

    Article  ADS  Google Scholar 

  18. H.A. Knutson, D. Charbonneau, L.E. Allen, J.J. Fortney, E. Agol, N.B. Cowan, A.P. Showman, C.S. Cooper, S.T. Megeath, Nature 447, 183 (2007)

    Article  ADS  Google Scholar 

  19. S. Seager, D. Deming, Annu. Rev. Astron. Astrophys. 48, 631 (2010)

    Article  ADS  Google Scholar 

  20. W.J. Borucki et al., Astrophys. J. 745, 120 (2012)

    Article  ADS  Google Scholar 

  21. W.J. Borucki et al., Science 340, 587 (2013)

    Article  ADS  Google Scholar 

  22. T. Barclay et al., Astrophys. J. 768, 101 (2013)

    Article  ADS  Google Scholar 

  23. D. Benest, J.L. Duvent, Astron. Astrophys. 299, 621 (1995)

    ADS  Google Scholar 

  24. S. Gillessen, F. Eisenhauer, S. Trippe, T. Alexander, R. Genzel, F. Martins, T. Ott, Astrophys. J. 692, 1075 (2009)

    Article  ADS  Google Scholar 

  25. M. Burgay et al., Nature 426, 531 (2003)

    Article  ADS  Google Scholar 

  26. M. Kramer et al., Science 314, 97 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Keeton, C. (2014). Gravitational Two-Body Problem. In: Principles of Astrophysics. Undergraduate Lecture Notes in Physics. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9236-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9236-8_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9235-1

  • Online ISBN: 978-1-4614-9236-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics