Skip to main content

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Direct plating is the term used in the damascene interconnect technology when copper (Cu) is plated on a substrate without a copper seed. The conductive copper seed is replaced by a nobler metal such as ruthenium (Ru) or metal compounds such as RuTa or RuTiN alloys in an effort to combine seed and barrier properties into one as the lining thin film material [1]. Copper electrodeposition on top of a foreign substrate by itself is of course not that unusual, copper plated on a platinum rotating disk electrode is quite standard in the lab, but there are many technological complications when bringing it to the wafer scale. In contrast to the conductive platinum disk in the lab, the thin barrier and seed lining layers are resistive which implies a significant potential drop from the wafer edge to the wafer center.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Volders H, Carbonell L, Heylen N, Kellens K, Zhao C, Marrant K, Faelens G, Conard T, Parmentier B, Steenbergen J, Van de Peer M, Wilson CJ, Sleeckx E, Beyer GP, Tokei Z, Gravey V, Shah K, Cockburn A (2011) Barrier and seed repair performance of thin RuTa films for Cu interconnects. Microelectron Eng 88(5):690–693

    Article  CAS  Google Scholar 

  2. Armini Silvia, Tokei Zsolt, Volders Henny, El-Mekki Zaid, Radisic Aleksandar, Beyer Gerald, Ruythooren Wouter, Vereecken PM (2011) Impact of “terminal effect” on Cu electrochemical deposition: filling capability for different metallization options. Microelectron Eng 88:754–759

    Article  CAS  Google Scholar 

  3. Andricacos PC, Uzoh C, Dukovic JO, Horkans J, Deligianni H (1998) Damascene copper electroplating for chip interconnections. IBM J Res Devel 42:567

    Article  CAS  Google Scholar 

  4. Lantasov Y, Palmans R, Maex K (2000) Direct copper electroplating. In: Edelstein D, Dixit G, Yasuda Y, Ohba T (eds) Advanced metallization conference 2000 (AMC 2000), proceedings of the conference pp 145–151

    Google Scholar 

  5. Venables JA (2000) Introduction to surface and thin film processes. University Press, Cambridge

    Book  Google Scholar 

  6. Oskam G, Long JG, Natarajan A, Searson PC (1998) Electrochemical deposition of metals on silicon. J Phys D Appl Phys 31:1

    Article  Google Scholar 

  7. Oskam G, Vereecken PM, Searson PC (1999) Electrochemical deposition of copper on n-Si/TiN. J Electrochem Soc 146:1436

    Article  CAS  Google Scholar 

  8. Milchev A (2002) Electrocrystallization: fundamentals of nucleation and growth. Kluwer Academic Publishers, Norwell

    Google Scholar 

  9. Budevski E, Staikov G, Lorentz WJ (1996) Electrochemical phase formation and growth. VCH, New York

    Book  Google Scholar 

  10. Southampton Electrochemistry Group (1985) Instrumental methods in electrochemistry. Ellis Horwood Limited, New York

    Google Scholar 

  11. Milchev A, Stoyanov S, Kaischev R (1974) Atomistic theory of electrolytic nucleation: I. Thin Solid Films 22:255

    Article  CAS  Google Scholar 

  12. Milchev A, Stoyanov S, Kaischev R (1974) Atomistic theory of electrolytic nucleation: II. Thin Solid Films 22:267

    Article  CAS  Google Scholar 

  13. Becker R, Doring W (1935) Ann Phys 24:719

    Article  CAS  Google Scholar 

  14. Walton D (1962) Nucleation of vapor deposits. J Chem Phys 37:2182

    Article  CAS  Google Scholar 

  15. Polewska W, Behm RJ, Magnussen OM (2003) In-situ video-STM studies of Cu electrodeposition on Cu(100) in HCl solution. Electrochim Acta 48:2915

    Article  CAS  Google Scholar 

  16. Magnussen OM, Zitzler L, Gleich B, Vogt MR, Behm RJ (2001) In-situ atomic-scale studies of the mechanisms and dynamics of metal dissolution by high-speed STM. Electrochim Acta 46:3725

    Article  CAS  Google Scholar 

  17. Yanson Y (2012) How additives affect Cu electrodeposition: an electrochemical STM study. PhD Thesis, Universiteit Leiden, 2012

    Google Scholar 

  18. Radisic A, Vereecken PM, Hannon JB, Searson PC, Ross FM (2006) Quantifying electrochemical nucleation and growth of nanoscale clusters using real-time kinetic data. Nano Lett 6:238

    Article  CAS  Google Scholar 

  19. Radisic A, Ross FM, Searson PC (2006) In situ study of the growth kinetics of individual Island electrodeposition of copper. J Phys Chem B 110:7862

    Article  CAS  Google Scholar 

  20. Radisic A, Vereecken PM, Searson PC, Ross FM (2006) The morphology and nucleation kinetics of copper islands during electrodeposition. Surf Sci 600:1817

    Article  CAS  Google Scholar 

  21. Avrami M (1939) Kinetics of phase change. I. General theory. J Chem Phys 7:1103

    Article  CAS  Google Scholar 

  22. Avrami M (1940) Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei. J Chem Phys 8:212

    Article  CAS  Google Scholar 

  23. Avrami M (1941) Kinetics of phase change. II. Granulation, phase change, and microstructure. J Chem Phys 9:177

    Article  CAS  Google Scholar 

  24. Abayaneh MY (1982) Calculation of overlap for nucleation and three-dimensional growth of centers. Electrochim Acta 27:1329

    Google Scholar 

  25. Bosco E, Rangarajan SK (1982) Electrochemical phase formation (ECPF) and macrogrowth. part I. Hemispherical models. J Electroanal Chem 134:213

    Article  CAS  Google Scholar 

  26. Bosco E, Rangarajan SK (1982) Electrochemical phase formation (ECPF) and macrogrowth. part II. Two-rate models. J Electroanal Chem 134:225

    Article  CAS  Google Scholar 

  27. Bobbert PA, Wind MM, Vlieger J (1987) Diffusion to a slowly growing truncated sphere on a substrate. Phys A 141:58

    Article  Google Scholar 

  28. Gunawardena G, Hills GJ, Montenegro I, Scharifker BR (1982) Electrochemical nucleation. Part 1. General consideration. J Electroanal Chem 138:225

    Article  CAS  Google Scholar 

  29. Scharifker BR, Hills GJ (1983) Theoretical and experimental studies of multiple nucleation. Electrochim Acta 28:879

    Article  CAS  Google Scholar 

  30. Scharifker BR, Mostany J (1984) Three-dimensional nucleation with diffusion controlled growth. Part 1. Number density of active sites and nucleation rates per site. J Electroanal Chem 177:13

    Article  CAS  Google Scholar 

  31. Hoffmann PM, Radisic A, Searson PC (2000) Growth kinetics for copper deposition on Si (100) from pyrophosphate solution. J Electrochem Soc 147:2576

    Article  CAS  Google Scholar 

  32. Radisic A, Long JG, Hoffmann PM, Searson PC (2001) Nucleation and growth of copper on TiN from pyrophosphate solution. J Electrochem Soc 148:C41

    Article  CAS  Google Scholar 

  33. Radisic A, West AC, Searson PC (2002) Influence of additives on nucleation and growth of copper on n-Si.111. from acidic sulfate solutions. J Electrochem Soc 149:C94

    Article  CAS  Google Scholar 

  34. Radisic A, Cao Y, Taephaisitphongse P, West AC, Searson PC (2003) Direct copper electrodeposition on TaN barrier layers. J Electrochem Soc 150:C362

    Article  CAS  Google Scholar 

  35. Radisic A, Oskam G, Searson PC (2004) Influence of oxide thickness on nucleation and growth of copper on tantalum. J Electrochem Soc 151:C369

    Article  CAS  Google Scholar 

  36. Guo L, Radisic A, Searson PC (2006) Electrodeposition of copper on oxidized ruthenium. J Electrochem Soc 153:C840

    Article  CAS  Google Scholar 

  37. Palmisano F, Desimoni E, Sabbatini L, Torsi G (1979) Nucleation phenomena in the electrodeposition of lead onto glassy-carbon electrodes. J Appl Electrochem 9:517

    Article  CAS  Google Scholar 

  38. Jacobs JWM (1988) J Electroanal Chem 247:135

    Article  CAS  Google Scholar 

  39. Oskam G, Searson PC (2000) Electrochemistry of gold deposition on n-Si(100). J Electrochem Soc 147(6):2199–2205

    Article  CAS  Google Scholar 

  40. Chyan O, Arunagiri TN, Ponnuswamy T (2003) Electrodeposition of copper thin film on ruthenium : a potential diffusion barrier for Cu interconnects. J Electrochem Soc 150:C347

    Article  CAS  Google Scholar 

  41. Emekli U, West AC (2009) Effect of additives and pulse plating on copper nucleation onto Ru. Electrochimica Acta 54:1177

    Google Scholar 

  42. Guo L, Thompson A, Searson PC (2010) The kinetics of copper island growth on ruthenium oxide in perchlorate solutions. Electrochim Acta 55:8416

    Article  CAS  Google Scholar 

  43. Radisic A, Boelen P, Rosenfeld A, Hernandez JL, Beyer GP, Vereecken PM (2008) Electrochemical nucleation and growth of copper on resistive substrates. ECS Trans 11:25

    Article  CAS  Google Scholar 

  44. Radisic A, Nagar M, Strubbe K, Armini S, El-Mekki Z, Volders H, Ruythooren W, Vereecken PM (2010) Copper plating on resistive substrates, diffusion barrier and alternative seed layers. ECS Trans 25:175

    Article  CAS  Google Scholar 

  45. Milchev A, Montenegro MI (1992) A galvanostatic study of electrochemical nucleation. J Electroanal Chem 333:93

    Article  CAS  Google Scholar 

  46. Nagar M, Radisic A, Strubbe K, Vereecken PM (2013) The effect of cupric ion concentration on the nucleation and growth of copper on RuTa seeded substrates. Electrochim Acta 92:474–483

    Google Scholar 

  47. Nagar M, Radisic A, Strubbe K, Vereecken PM (2012) Nucleation and growth of copper on Ru-based substrates: I. The effect of the inorganic components. ECS Trans 41:75

    Google Scholar 

  48. Nagar M, Radisic A, Strubbe K, Vereecken PM (2012) Nucleation and growth of copper on Ru-based substrates: II. The effect of the suppressor additive. ECS Trans 41:99

    Google Scholar 

  49. Andricacos P, Deligianni H, Horkans WJ, Kwietniak KT, Lane M, Malhotra SG, Mc Feely FR, Murray C, Rodbell KP, Vereecken PM (2005) Method for electroplating on resistive substrates. U.S. Patent Application Pub. No US2004069648 A1, (2004), U.S. Patent. No.US 6,974,531 B2 (2005)

    Google Scholar 

  50. Moffat TP, Walker M, Chen PJ, Bonevich JE, Egelhoff WF, Richter L, Witt C, Aaltonen T, Ritala M, Leskelä M, Josell D (2006) Electrodeposition of Cu on Ru Barrier layers for damascene processing. J Electrochem Soc 153:C37–C50

    Article  CAS  Google Scholar 

  51. Vereecken PM, Radisic A A pre-treatment method to increase Cu island density of Cu on barrier layers”, U.S. Patent Application Pub. No. US2010/0273323 A1

    Google Scholar 

  52. Desprez P, Matlosz M, Yang JDL, West AC (1998) Estimation of front velocity in electrodeposition onto highly resistive substrates. J Electrochem Soc 145(1):165–171

    Article  CAS  Google Scholar 

  53. Takahashi KM (2000) Electroplating copper onto resistive barrier films. J Electrochem Soc 147:1414

    Article  CAS  Google Scholar 

  54. Purcar M, Van den Bossche B, Bortels L, Dekoninck J, Nelissen G (2004) Three-dimensional current density distribution simulations for a resistive patterned wafer. J Electrochem Soc 151:D78

    Article  CAS  Google Scholar 

  55. Armini S, Vereecken PM (2010) Impact of “Terminal Effect” on Cu plating: theory and experimental evidence. ECS Tran. 25(27):185

    Google Scholar 

  56. Yang L, Radisic A, Nagar M, Deconinck J, Vereecken PM, West A (2012) Multi-scale modeling of direct copper plating on resistive non-copper substrates. Electrochim Acta 78:524–531. doi:10.1016/j.electacta.2012.06.076

    Article  CAS  Google Scholar 

  57. Deligianni H, Dukovic JO, Andricacos PC, Walton EG (1999) Electrochemical processing in ULSI fabrication and semiconductor/metal deposition II. In: Andricacos PC, Searson PC, Reidsema-Simpson C, Allongue P, Stickney JL, Oleszek GM (eds) Electrochemical society proceedings. The electrochemical society, Pennington, NJ, vol 99-9, p 83

    Google Scholar 

  58. Fang R, Namiki K, Vereecken PM, Kwietniak K, Baker BC, Ide K, Suzuki H, Kanda H, Mishima K, Musaka K, Deligianni H (2005) Uniform copper electroplating on resistive substrates. In: Electrochemical processing in ULSI fabrication I, (ECS meeting 2004) The electrochemical society, Pennington, NJ

    Google Scholar 

  59. Lane MW, Murray CE, McFeely FR, Vereecken PM, Rosenberg R (2003) Liner materials for direct electrodeposition of Cu. Appl Phys Lett 83:2330

    Google Scholar 

  60. Malhotra SG, Canaperi D, Chiras S, Deligianni L, Johnson G, Krishnan M, Lane M, McFeely F, Murray C, Ponoth S, Simon A, Spooner T, Vereecken P, Yurkas J (2005) Integration of direct plating of Cu onto a CVD Ru liner. In: Erb D, Ramm P, Masu K, Osaki A, Warrendale MRS (eds) Conference Proceedings of AMC 2004, PA, p 525

    Google Scholar 

  61. Armini Silvia, Demuynck Steven, El-mekki Zaid, Swerts Johan, Nagar Magi, Radisic Alex, Heylen Nancy, Beyer Gerald, Leunissen Leonardus, Vereecken Philippe (2011) Direct copper electrochemical deposition on Ru-based substrates for advanced interconnects target 30 nm and 1/2 pitch lines: from coupon to full-wafer experiments. ECS Trans 35(2):117

    Article  CAS  Google Scholar 

  62. Willey Mark J, Emekli Ugur, West Alan C (2008) Uniformity effects when electrodepositing Cu onto resistive substrates in the presence of organic additives. J Electrochem Soc 155(4):D302–D307

    Article  CAS  Google Scholar 

  63. Atanasova TA, Carbonell L, Caluwaerts R, Tokei Z, Strubbe K, Vereecken PM (2012) Ultra-low copper baths for sub-35 nm copper interconnects. ECS Trans 41(35):83–97

    Article  CAS  Google Scholar 

  64. Joi A, Landau U (2011) An alkaline copper plating process providing high nucleation density on Ru and bottom-up fill. In: Abstract #1944, 220th ECS meeting

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe M. Vereecken .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Radisic, A., Vereecken, P.M. (2014). Direct Copper Plating. In: Kondo, K., Akolkar, R., Barkey, D., Yokoi, M. (eds) Copper Electrodeposition for Nanofabrication of Electronics Devices. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9176-7_7

Download citation

Publish with us

Policies and ethics