Skip to main content

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Fabrication of microscale and nanoscale structures can be implemented by electrodeposition of copper onto conductive templates that contain recesses in form of the desired structure. The current distribution that results from deposition from a simple acid copper solution is concentrated near the upper corners of recesses and results in incomplete filling, formation of voids, and a substantial overburden of nonfunctional material.

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-1-4614-9176-7_12

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vereecken PM, Binstead RA, Deligianni H, Andricacos PC (2005) The chemistry of additives in copper Damascene plating. IBM J Res Dev 49:3–19

    Article  CAS  Google Scholar 

  2. Tan M, Guymon C, Wheeler DR, Harb JN (2007) The role of SPS, MPSA, and chloride in additive systems for copper electrodeposition. J Electrochem Soc 154:D78–D81

    Article  CAS  Google Scholar 

  3. Healy JP, Pletcher D (1992) The chemistry of additives in an acid copper electroplating bath. J Electroanal Chem 338:167–177

    Article  CAS  Google Scholar 

  4. Survila A, Kanapeckaite S, Pauliukaite R (1998) Polaragraphic behavior of Cu(II) solutions involving 3-Mercapto-1-Propanosulphonic Acid. Chemija 1:21–26

    Google Scholar 

  5. Frank A, Bard AJ (2003) The decomposition of the sulfonate additive sulfopropyl sulfonate in acid copper electroplating chemistries. J Electrochem Soc 150:C244–C250

    Article  CAS  Google Scholar 

  6. Pasquale MA, Bolzan AE, Guida JA, Piatti RCV, Arvia AJ, Piro OE, Castellano EE (2007) A new polymeric [Cu(SO3(CH2)3SeS(CH2)3SO3)(H2O)4]n complex molecule produced from constituents of a super-conformational copper plating bath: Crystal structure, infrared and Raman spectra and thermal behavior. Solid State Sci 9:862–868

    Article  CAS  Google Scholar 

  7. Okubu T, Watanabe K, Kondo K (2007) Analytical study of the characteristics of Cu(I) species for the via-filling electroplating using a RRDE. J Electrochem Soc 154:C181–C187

    Article  Google Scholar 

  8. Chen H-M, Parulekar SJ, Zdunek A (2008) Interactions of chloride and 3-Mercapto-1-Propane sulfonic acid in acidic copper sulfate electrolyte. J Electrochem Soc 155:D349–D356

    Article  CAS  Google Scholar 

  9. Garcia-Cardona E, Wong EH, Barkey DP (2011) NMR spectral studies of interactions between the accelerants SPS and MPS and copper chlorides. J Electrochem Soc 158:D143–D148

    Article  CAS  Google Scholar 

  10. Schultz ZD, Feng ZV, Biggin ME, Gewirth AA (2006) Vibrational spectroscopic and mass spectrometric studies of the interaction of Bis(3-sulfopropyl)-disulfide with Cu surfaces. J Electrochem Soc 153:C97–C107

    Article  CAS  Google Scholar 

  11. Volov I, West AC (2011) Interaction between SPS and MPS in the presence of ferrous and ferric ions. J Electrochem Soc 158:D456–D461

    Article  CAS  Google Scholar 

  12. Hung C-C, Lee W-H, Hu S-Y, Chang S-C, Chen K-W, Wang Y-L (2008) Investigation of Bis-(3-sodiumsulfopropyl disulfide) (SPS) decomposition in a copper-electroplating bath using mass spectroscopy. J Electrochem Soc 155:H329–H333

    Article  CAS  Google Scholar 

  13. Brennan, RG, Philips, MM, Ou Yang, L-Y, Moffat, TP (2011) Characterization and purification of commercial SPS and MPS by ion chromatography and mass spectrometry. J Electrochem Soc 158:D178–D186

    Google Scholar 

  14. Gabrielli C, Mocoteguy P, Perrot H, Zdunek A, Nieto-Sanz D (2007) Influence of the anode on the degradation of the additives in the Damascene process for copper deposition. J Electrochem Soc 154:D163–D169

    Article  CAS  Google Scholar 

  15. Lee W-H, Hung C-C, Chang S-C, Wang Y-L (2010) Bis-(3-sodiumsulfopropyl disulfide) decomposition with cathodic current flowing in a copper-electroplating bath. J Electrochem Soc 157:H131–H135

    Google Scholar 

  16. Tan M, Harb JN (2003) Additive behavior during copper electrodeposition in solutions containing Cl−, PEG, and SPS. J Electrochem Soc 150:C420–C425

    Article  CAS  Google Scholar 

  17. Başol BM, West AC (2006) Study on mechanically induced current suppression and super filling mechanisms. Electrochem Solid-State Lett 9:C77–C80

    Article  Google Scholar 

  18. Bozzini B, D’Urzo L, Romanello V, Mele C (2006) Electrodeposition of Cu from acidic sulfate solutions in the presence of Bis-(3-sulfopropyl)-disulfide (SPS) and chloride ions. J Electrochem Soc 153:C254–C257

    Article  CAS  Google Scholar 

  19. Walker ML, Richter LJ, Moffat TP (2006) Competitive adsorption of PEG, Cl−, and SPS/MPS on Cu: an in situ ellipsometric study. J Electrochem Soc 153:C557–C561

    Article  CAS  Google Scholar 

  20. Täubert CE, Kolb DM, Memmert U, Meyer H (2007) Adsorption of the additives MPA, MPSA, and SPS onto Cu(111) from sulfuric acid solutions. J Electrochem Soc 154:D293–D299

    Article  Google Scholar 

  21. Tu H-L, Yen P-Y, Chen S, Yau S-L, Dow W-P, Lee Y-L (2011) In situ imaging of Bis-3-sodiumsulfopropyl-disulfide molecules adsorbed on copper film electrodeposited on Pt(111) single crystal electrode. Langmuir 27:6801–6807

    Article  CAS  Google Scholar 

  22. Willey MJ, West AC (2007) SPS adsorption and desorption during copper electrodeposition and its impact on PEG adsorption. J Electrochem Soc 154:D156–D162

    Article  CAS  Google Scholar 

  23. Bae S-E, Gewirth AA (2006) In situ EC-STM studies of MPS, SPS, and chloride on Cu(100): structural studies of accelerators for dual Damascene electrodeposition. Langmuir 22:10315–10321

    Article  CAS  Google Scholar 

  24. Walker ML, Richter LJ, Moffat TP (2007) Potential dependence of competitive adsorption of PEG, Ci- and SPS/MPS on Cu: an in situ ellipsometric study. J Electrochem Soc 154:D277–D282

    Article  CAS  Google Scholar 

  25. Hai NTM, Kramer KW, Fluegel A, Arnold M, Mayer D, Broekmann P (2012) Beyond interfacial anion/cation pairing: the role of Cu(I) coordination chemistry in additive-controlled copper plating. Electrochim Acta 83:367–375

    Article  CAS  Google Scholar 

  26. Hai NTM, Huynh TMT, Fluegel A, Arnold M, Mayer D, Reckien W, Broekmann P (2012) Competitive anion/anion interactions on copper surfaces relevant for Damascene electroplating. Electrochim Acta 70:286–295

    Article  CAS  Google Scholar 

  27. Huynh TMT, Weiss F, Hai NTM, Reckien W, Bredow T, Fluegel A, Arnold M, Mayer D, Keller H, Broekmann P (2013) On the role of halides and thiols in additive-assisted copper electroplating. Electrochim Acta 89:537–548

    Article  CAS  Google Scholar 

  28. Moffat TP, Wheeler D, Huber WH, Jossell D (2001) Superconformal electrodeposition of copper. Electrochem Solid-State Lett 4:C26

    Article  CAS  Google Scholar 

  29. West AC, Mayer S, Reid J (2001) A superfilling model that predicts bump formation. Electrochem Solid-State Lett 2001(4):C50–C53

    Article  Google Scholar 

  30. Chalupa R, Cao Y, West AC (2002) Unsteady diffusion effects on electrodeposition into a submicron trench. J Appl Electrochem 32:135–143

    Google Scholar 

  31. Akolkar R, Landau U (2004) A time-dependent transport-kinetics model for additive interactions in copper interconnect metallization. J Electrochem Soc 151:C702–C711

    Article  CAS  Google Scholar 

  32. Akolkar R, Landau U (2009) Mechanistic analysis of the ‘bottom-up’ fill in copper interconnect metallization. J Electrochem Soc 156:D351–D359

    Article  CAS  Google Scholar 

  33. Adolf J, Landau U (2011) Predictive analytical fill model of interconnect metallization providing optimal additives concentrations. J Electrochem Soc 158:D469–D476

    Article  CAS  Google Scholar 

  34. Kondo K, Yamakawa N, Tanaka Z, Hayashi K (2003) Copper Damascene electrodeposition and additives. J. Electroanalytical Chem. 559:137–142

    Article  CAS  Google Scholar 

  35. Kondo K, Matsumoto T, Watanabe K (2004) Experimental study on inhibition and acceleration effects role of additives for copper Damascene electrodeposition. J Electrochem Soc 151:C250–C255

    Article  CAS  Google Scholar 

  36. Mazur S, Jackson CE Jr (2008) Enhanced electrodeposition of Cu into recessed features via topographically selective ozonolysis of adsorbed accelerator. J Electrochem Soc 155:D608–D613

    Article  CAS  Google Scholar 

  37. Kondo K, Yonezawa T, Mikami D, Okubo T, Taguchi Y, Takahashi K, Barkey DP (2005) High-aspect-ratio copper-via-filling for three-dimensional chip stacking; II. reduced electrodeposition process. J Electrochem Soc 152:H173–H177

    Article  Google Scholar 

  38. Tantavishet N, Pritzker M (2003) Low- and high-frequency pulse current and pulse reverse plating of copper. J Electrochem Soc 150:C665–C670

    Google Scholar 

  39. White JR (1987) Reverse pulse plating of copper from acid electrolyte; a rotating ring disk electrode study. J Applied Electrochem 17:977–982

    Google Scholar 

  40. Kondo K, Hamazaki K, Yokoi M, Okamoto N, Saito T (2013, in present) Behavior of cuprous intermediate in copper damascene electrodeposition. ECS Electrochem. Lett.,In course of publication

    Google Scholar 

  41. Kondo K, Hamazaki K, Yokoi M, Okamoto N, Saito T (2013, in present) Behavior of cuprous intermediate in copper damascene electrodeposition. ECS 2013 Fall Meeting in SanFransisco, Abstract 2086

    Google Scholar 

  42. Nagy Z, Blaudeau JP, Hung NC, Curtiss LA, Zurawski DJ (1995) Chloride ion catalysis of the copper deposition reaction. J.Electrochem Soc 142:L87–L92

    Google Scholar 

Download references

Acknowledgments

The author acknowledges many helpful suggestions provided by Professor Edward H. Wong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dale P. Barkey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Barkey, D.P. (2014). Acceleration Effect. In: Kondo, K., Akolkar, R., Barkey, D., Yokoi, M. (eds) Copper Electrodeposition for Nanofabrication of Electronics Devices. Nanostructure Science and Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9176-7_3

Download citation

Publish with us

Policies and ethics