Skip to main content

Planetary Ionospheres and Magnetospheres

  • Chapter
  • First Online:
Solar System Astrophysics

Part of the book series: Astronomy and Astrophysics Library ((AAL))

  • 1761 Accesses

Abstract

We begin this chapter with a detailed review of the ionization and recombination processes in a planetary ionosphere, as exemplified by the ionosphere we know the most about, that of the Earth. We then extend the discussion to the ionospheres of Mars and Venus, and examine atmospheric loss mechanisms. After using Maxwell’s equations to learn about electromagnetic wave propagation in an ionosphere, we review basic magnetospheric processes and look at their effects, such as particle trapping and precipitation, the ring current and other magnetospheric currents, magnetospheric convection and substorms, and magnetospheric-ionospheric coupling and aurorae. We conclude the chapter with a discussion of the magnetospheres of Mercury, Venus and Mars.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The words “primary” and “secondary” refer to the sequence of events, not to relative importance, i.e., the primary reactions have to occur first, in order for the secondary reactions to occur.

  2. 2.

    Mixing ratio is defined in Footnote 3, Sect. 10.2.2.

  3. 3.

    The SI unit of magnetic flux is the weber: 1 Wb = 1 weber = 1 T m2. B is therefore the magnetic flux density; i.e., the magnetic flux per unit area: 1 T = 1 Wb/m2.

  4. 4.

    The curl of any vector field, \( \overrightarrow{F} \), written \( \overrightarrow{\nabla} \times \overrightarrow{F} \), is a measure of rotation in the field. [A vector field is a representation of a vector quantity that (in general) has a different magnitude and direction at each point in space; e.g., the magnetic flux density, \( \overrightarrow{B} \)]. An intuitive way to think of curl is to imagine the vector field as representing flow vectors in a fluid. If a little paddlewheel placed at some point rotates as the fluid flows past it, then the vector field has non-zero curl at that point.

  5. 5.

    The magnetic field configuration at the Earth’s surface at earlier times can be determined from archaeomagnetic and paleomagnetic data; e.g., the last time a clay hearth was heated above the Curie point and cooled again, the magnetic orientation of iron in the clay aligned itself with the magnetic field of the Earth at that time and location. Lake sediments have also been used, because iron in the sediments aligns itself with the local magnetic field as the material settles.

  6. 6.

    This is because the differential gravitational force is proportional to r–3.

References

  • Acuña, M.H., Connerney, J.E.P., Wasilewski, P., Lin, R.P., Mitchell, D., Anderson, K.A., Carlson, C.W., McFadden, J., Reme, H., Mazelle, C., Vignes, D., Bauer, S.J., Cloutier, P., Ness, N.F.: Magnetic field of Mars: summary of results from the aerobraking and mapping orbits. J. Geophys. Res. 106(E10), 23403–23417 (2001)

    Article  ADS  Google Scholar 

  • Anderson, B.J., Johnson, C.L., Korth, H., Purucker, M.E., Winslow, R.M., Slavin, J.A., Solomon, S.C., McNutt Jr., R.L., Raines, J.M., Zurbuchen, T.H.: The global magnetic field of Mercury from MESSENGER orbital observations. Science 333, 1859–1862 (2011)

    Article  ADS  Google Scholar 

  • André, M., Yau, A.: Theories and Observations of Ion Energization and outflow in the High latitude Magnetosphere. Space Sci. Rev. 80, 27–48 (1997)

    Article  ADS  Google Scholar 

  • Angelopoulos, V.: The THEMIS Mission. Space Sci. Rev. 141, 5–34 (2008)

    Article  ADS  Google Scholar 

  • Barabash, S., Fedorov, A., Sauvaud, J.J., Lundin, R., Russell, C.T., Futaana, Y., Zhang, T.L., Andersson, H., Brinkfeldt, K., Grigoriev, A., Holmström, M., Yamauchi, M., Asamura, K., Baumjohann, W., Lammer, H., Coates, A.J., Kataria, D.O., Linder, D.R., Curtis, C.C., Hsieh, K.C., Sandel, B.R., Grande, M., Gunell, H., Koskinen, H.E.J., Kallio, E., Riihelä, P., Säles, T., Schmidt, W., Kozyra, J., Krupp, N., Fränz, M., Woch, J., Luhmann, J., McKenna-Lawlor, S., Mazelle, C., Thocaven, J.-J., Orsini, S., Cerulli-Irelli, R., Mura, M., Milillo, M., Maggi, M., Roelof, E., Brandt, P., Szego, K., Winningham, J.D., Frahm, R.A., Scherrer, J., Sharber, J.R., Wurz, P., Bochsler, P.: The loss of ions from Venus through the plasma wake. Nature 450, 650–653 (2007)

    Article  ADS  Google Scholar 

  • Cahill Jr., L.J.: Inflation of the inner magnetosphere. In: Carovillano, R.L., McClay, J.F., Radoski, H.R. (eds.) Physics of the Magnetosphere, pp. 263–270. Reidel, Dordrecht (1968)

    Chapter  Google Scholar 

  • Chen, R.H., Cravens, T.E., Nagy, A.F.: The Martian ionosphere in light of the Viking observations. J. Geophys. Res. 83, 3871–3876 (1978)

    Article  ADS  Google Scholar 

  • Chaufray, J.Y., Bertaux, J.L., Leblanc, F., Quémerais, E.: Observation of the hydrogen corona with SPICAM on Mars Express. Icarus 195, 598–613 (2008)

    Google Scholar 

  • Connerney, J.E.P., Acuña, M.H., Wasilewski, P., Ness, N.F., Reme, H., Mazelle, C., Vignes, D., Lin, R.P., Mitchell, D., Cloutier, P.: Magnetic lineations in the ancient crust of Mars. Science 284(5415), 794–798 (1999)

    Article  ADS  Google Scholar 

  • Crary, F.J., Bagenal, F.: Remanent ferromagnetism and the interior structure of Ganymede. J. Geophys. Res. 103, E11, 25,757-25,773 (1998)

    Google Scholar 

  • Elphic, R.C., Russell, C.T., Slavin, J.A., Brace, L.H.: Observations of the dayside ionopause and ionosphere of Venus. J. Geophys. Res. 85, 7679–7696 (1980)

    Article  ADS  Google Scholar 

  • Fedorov, A., Barabash, S., Sauvaud, J.-A., Futaana, Y., Zhang, T.L., Lundin, R., Ferrier, C.: Measurements of the ion escape rates from Venus for solar minimum. J. Geophys. Res. 116, A07220 (2011). doi:10.1029/2011JA016427 (9 pages)

    ADS  Google Scholar 

  • Griffiths, D.J.: Introduction to Electrodynamics, 3rd edn. Prentice-Hall, Upper Saddle River, NJ (1999)

    Google Scholar 

  • Halekas, J.S., Eastwood, J.P., Brain, D.A., Phan, T.D., Øieroset, M., Lin, R.P.: In situ observations of reconnection hall magnetic fields at Mars: evidence for ion diffusion region encounters. J. Geophys. Res. 114, A11204 (2009). doi:10.1029/2009JA014544 (18 pages)

    Article  ADS  Google Scholar 

  • Heyner, D., Wicht, J., Gómez-Pérez, N., Schmitt, D., Auster, H.-U., Glassmeier, K.-H.: Evidence from numerical experiments for a feedback dynamo generating Mercury’s magnetic field. Science 334, 1690–1693 (2011)

    Article  ADS  Google Scholar 

  • Hunten, D.M.: Thermal and nonthermal escape mechanisms for terrestrial bodies. Planet. Space Sci. 30(8), 773–783 (1982)

    Article  ADS  Google Scholar 

  • Hunten, D.M., Pepin, R.O., Walker, J.C.G.: Mass fractionation in hydrodynamic escape. Icarus 69, 532–549 (1987)

    Article  ADS  Google Scholar 

  • Knudsen, D.J.: Private communication (2013)

    Google Scholar 

  • Korte, M., Constable, C.: Improving geomagnetic field reconstructions for 0–3 ka. Phys. Earth Planet. In. 188, 247–259 (2011)

    Article  ADS  Google Scholar 

  • Iribarne, J.V., Cho, H.-R.: Atmospheric Physics. Reidel, Dordrecht (1980)

    Book  Google Scholar 

  • Lammer, H., Lichtenegger, H.I.M., Biernat, H.K, Erkaev, N.V., Arshukova, I.L., Kolk, C., Gunell, H., Lukyanov, A., Holmstrom, M., Barabash, S., Zhang, T.L., Baumjohann, W.: Loss of hydrogen from the upper atmosphere of Venus. Planetary and Space Science 54, 1445-1456 (2006)

    Article  ADS  Google Scholar 

  • Lammer, H., Lichtenegger, H.I.M., Kolb, C., Ribas, I., Guinan, E.F., Abart, R., Bauer, S.J.: Loss of water from Mars: implications for the oxidation of the soil. Icarus 165, 9–25 (2003)

    Article  ADS  Google Scholar 

  • Lundin, R., Winningham, D., Barabash, S., Frahm, R., Brain, D., Nilsson, H., Holmström, M., Yamauchi, M., Sharber, J.R., Sauvaud, J.-A., Fedorov, A., Asamura, K., Hayakawa, H., Coates, A.J., Soobiah, Y., Curtis, C., Hsieh, K.C., Grande, M., Koskinen, H., Kallio, E., Kozyra, J., Woch, J., Fraenz, M., Luhmann, J., McKenna-Lawler, S., Orsini, S., Brandt, P., Wurz, P.: Auroral plasma acceleration above Martian magnetic anomalies. Space Sci. Rev. 126, 333–354 (2007)

    Article  ADS  Google Scholar 

  • Lyatsky, W., Khazanov, G.V., Slavin, J.A.: Alfven Wave Reflection model of field-aligned currents at Mercury. Icarus 209, 40–45 (2010)

    Article  ADS  Google Scholar 

  • McComas, D.J., Spence, H.E., Russell, C.T., Saunders, M.A.: The average magnetic field draping and consistent plasma properties of the Venus magnetotail. J. Geophys. Res. 91(A7), 7939–7953 (1986)

    Article  ADS  Google Scholar 

  • Milan, S.E., Provan, G., Hubert, B.: Magnetic flux transport in the Dungey Cycle: a survey of dayside and nightside reconnection rates. J. Geophys. Res. 112, A01209 (2007). doi:10.1029/2006JA011642 (13 pages)

    ADS  Google Scholar 

  • Milone, E.F., Wilson, W.J.F.: Solar System Astrophysics: Planetary Atmospheres and the Outer Solar System, 2nd edn. Springer, New York (2014)

    Book  Google Scholar 

  • Nair, H., Allen, M., Anbar, A.D., Yung, Y.L.: A photochemical model of the Martian atmosphere. Icarus 111, 124–150 (1994)

    Article  ADS  Google Scholar 

  • Nimmo, F.: Why does Venus lack a magnetic field? Geology 3(11), 987–990 (2002)

    Article  ADS  Google Scholar 

  • Olson, P., Deguen, R.: Eccentricity of the geomagnetic dipole caused by lopsided inner core growth. Nature Geoscience 5, 565-569 (2012)

    Article  ADS  Google Scholar 

  • Parks, G.K.: Physics of Space Plasmas, an Introduction. Addison-Wesley, Redwood City, CA (1991)

    Google Scholar 

  • Parks, G.K.: Physics of Space Plasmas, an Introduction. 2nd ed. Harper-Collins, Perseus Books, Reading, MA (2003)

    Google Scholar 

  • Runcorn, S.K.: An ancient lunar magnetic dipole field. Nature 253, 701–703 (1975)

    Article  ADS  Google Scholar 

  • Russell, C.T., Vaisberg, O.: The interaction of the solar wind with Venus. In: Hunten, D.M., Colin, L., Donahue, T.M., Moroz, V.I. (eds.) Venus, pp. 873–879. University of Arizona Press, Tucson, AZ (1983)

    Google Scholar 

  • Schriver, D., Trávníček, P.M., Anderson, B.J., Ashour-Abdalla, M., Baker, D.N., Benna, M., Boardsen, S.A., Gold, R.E., Hellinger, P., Ho, G.C., Korth, H., Krimigis, S.M., McNutt Jr., R.L., Raines, J.M., Richard, R.L., Slavin, J.A., Solomon, S.C., Starr, R.D., Zurbuchen, T.H.: Quasi-trapped ion and electron populations at Mercury. Geophys. Res. Lett. 38, L23103 (2011). doi:10.1029/2011GL049629 (6 pages)

    ADS  Google Scholar 

  • Sergeev, V.A., Angelopoulos, V., Nakamura, R.: Recent advances in understanding substorm dynamics. Geophys. Res. Lett. 39, L05101 (2012). doi:10.1029/2012GL050859 (10 pages)

    ADS  Google Scholar 

  • Silsbee, H., Vestine, E.: Geomagnetic bays, their frequency and current systems. Terr. Magn. Atmos. Electr. 47, 195–208 (1942)

    Article  Google Scholar 

  • Slavin, J.A., Anderson, B.J., Baker, D.N., Benna, M., Boardsen, S.A., Gold, R.E., Ho, G.C., Imber, S.M., Korth, H., Krimigis, S.M., McNutt Jr., R.L., Raines, J.M., Sarantos, M., Schriver, D., Solomon, S.C., Trávníček, P., Zurbuchen, T.H.: MESSENGER and Mariner 10 Flyby observations of magnetotail structure and dynamics at Mercury. J. Geophys. Res. 117, A01215 (2012). doi:10.1029/2011JA016900 (4 pages)

    Google Scholar 

  • Slavin, J.A., Anderson, B.J., Baker, D.N., Benna, M., Boardsen, S.A., Gloeckler, G., Gold, R.E., Ho, G.C., Korth, H., Krimigis, S.M., McNutt Jr., R.L., Nittler, L.R., Raines, J.M., Sarantos, M., Schriver, D., Solomon, S.C., Starr, R.D., Trávníček, P.M., Zurbuchen, T.H.: MESSENGER observations of extreme loading and unloading of Mercury’s magnetic tail. Science 329, 665–668 (2010)

    Article  ADS  Google Scholar 

  • Stevenson, D.J.: Planetary magnetic fields. Earth Planet. Sci. Lett. 208, 1–11 (2003)

    Article  ADS  Google Scholar 

  • Stevenson, D.J., Spohn, T., Schubert, G.: Magnetism and thermal evolution of the terrestrial planets. Icarus 54, 466–489 (1983)

    Article  ADS  Google Scholar 

  • Vasyliūnas, V.M., Song, P.: Meaning of ionospheric Joule heating. J. Geophys. Res. 110, A02301 (2005). doi:10.1029/2004JA010615 (8 pages)

    ADS  Google Scholar 

  • Wicht, J., Mandea, M., Takahashi, F., Christensen, U.R., Matsushima, M., Langlais, B.: The origin of Mercury’s internal magnetic field. Space Sci. Rev. 132, 261–290 (2007)

    Article  ADS  Google Scholar 

  • Zhang, T.L., Lu, Q.M., Baumjohann, W., Russell, C.T., Fedorov, A., Barabash, S., Coates, A.J., Du, A.M., Cao, J.B., Nakamura, R., Teh, W.L., Wang, R.S., Dou, X.K., Wang, S., Glassmeier, K.H., Auster, H.U., Balikhin, M.: Magnetic reconnection in the near Venusian magnetotail. Science 336, 567–570 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Challenges

Challenges

  1. [11.1]

    In (11.26), derive λ J  = r x /H x and λ J  = (v esc /v th )2 from the expression λ J  = GMm/(kT x r x ).

  2. [11.2]

    Derive (11.93) from (11.92). [Hint: Electric current equals the amount of charge passing a given point per second; how is the current associated with a gyrating particle related to the charge of the particle and the period of the gyromotion?]

  3. [11.3]

    Derive (11.98) from (11.76) and other previous results.

  4. [11.4]

    Justify, using \( {\overrightarrow{F}}_{\mathrm{B}}=q\overrightarrow{v}\times \overrightarrow{B} \), the statement preceding (11.99) that the kinetic energy of the particle is constant. [A descriptive answer is acceptable, but the description should be physically precise.]

  5. [11.5]

    Spacecraft orbiting through the trapping region of a planetary magnetosphere, such as the Earth’s Van Allen radiation belts, do not necessarily orbit in the plane of the magnetic equator; thus, they sample the magnetosphere at a range of magnetic latitudes. For uniformity of data, measured pitch angles are usually referred to the magnetic equator. If the spacecraft measures a pitch angle, α, for a particle at a location away from the magnetic equator where the magnetic field strength is B, and if on the same field line the magnetic field strength at the magnetic equator is B 0, show that the pitch angle, α 0, of the particle as it crosses the magnetic equator is given by

    $$ { \sin}^2{\alpha}_0=\frac{B_0}{B}{ \sin}^2\alpha $$

    [Hint: μ B and Φ B are constants of the motion. Express the pitch angles in terms of v at B and v 0 at B 0, and use (11.93) and (11.97).]

  6. [11.6]

    The loss cone is approximately 3° for particles on the geomagnetic equator at 6 R E above the Earth’s surface, i.e., particles of this pitch angle mirror at ionospheric heights:

    1. a.

      What is the mirror ratio, i.e., the ratio of the magnetic field strength at the ionosphere to that at the geomagnetic equator, along this field line? [Hint: Refer to problem 11.4. What is the pitch angle at the mirror point?]

    2. b.

      If particles are injected with an initially isotropic distribution of pitch angles at 6 R E on the geomagnetic equator, what fraction of these particles are precipitated?

[11.7] Equations (11.77) and (11.79) in Sect. 11.5.6 give, respectively, the \( \overrightarrow{F}\times \overrightarrow{B} \) drift velocity, \( {\overrightarrow{v}}_{\mathrm{D}} \), and its more commonly used form, the \( \overrightarrow{E}\times \overrightarrow{B} \) drift velocity. The purpose of this problem is to derive (11.77) and (11.79).

Figure 11.45 shows a uniform magnetic field, \( \overrightarrow{B} \), out of the page. In addition to any magnetic forces, all charges in this region also feel a downward force, \( \overrightarrow{F} \), of external origin (e.g., gravitational or electrical) of uniform magnitude regardless of position. (\( \overrightarrow{F} \) is unrelated to \( \overrightarrow{B} \).)

  1. a.

    Suppose you take hold of the charge shown above and run with a constant (vector) velocity, \( \overrightarrow{v} \), holding tightly onto the charge so it cannot execute gyromotion. In what direction would you have to run so that the total force (or net force) on the particle is zero? Draw a vector diagram showing and labelling \( \overrightarrow{B},\overrightarrow{v} \), and all forces. Then write down the vector equation relating \( \overrightarrow{F},\overrightarrow{v} \), and \( \overrightarrow{B} \). (In this and the other parts, below, keep careful track of minus signs.)

    figure 45

    Fig. 11.45

  2. b.

    Evaluate the quantity \( \left(\overrightarrow{v}\times \overrightarrow{B}\right)\times \overrightarrow{B} \) for this situation, using the unit vectors shown above. Express your answer in terms of a single unit vector, then rewrite your answer to express the quantity \( \left(\overrightarrow{v}\times \overrightarrow{B}\right)\times \overrightarrow{B} \) in terms of \( \overrightarrow{v} \).

  3. c.

    Obtain (11.77) from your answers to parts a and b.

  4. d.

    Now assume that the force, \( \overrightarrow{F} \), is caused by an electric field vertically downward in the reference frame of the diagram (i.e., \( \overrightarrow{F}=q\overrightarrow{E} \)). In your reference frame, the force on a stationary particle is zero. It follows that, by running, you have placed yourself in a reference frame in which the electric field is zero: if you let go of the particle, it will remain at rest in your reference frame, so evidently there is no electric field.

If a particle is now released at rest in the original reference frame of the diagram, what initial velocity will you see for this particle? What subsequent motion do you expect to see for this particle? (Remember, in your reference frame there is only a magnetic field.) By extension, what subsequent motion would an observer see who is at rest in the reference frame of the diagram? What is the \( \overrightarrow{E}\times \overrightarrow{B} \) drift velocity of the guiding center in the reference frame of the diagram? (Also check that the drift velocity is in the direction of \( \overrightarrow{E}\times \overrightarrow{B} \).)

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Milone, E.F., Wilson, W.J.F. (2014). Planetary Ionospheres and Magnetospheres. In: Solar System Astrophysics. Astronomy and Astrophysics Library. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9090-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9090-6_2

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9089-0

  • Online ISBN: 978-1-4614-9090-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics