Skip to main content

Localized States in GaAsBi and GaAs/GaAsBi Heterostructures

  • Chapter
  • First Online:

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 186))

Abstract

Deep- and shallow-level defects in device-quality GaAs1−x Bi x (x ≤ 10.9%) are investigated. Despite low-temperature growth, GaAs1−x Bi x emits intense band-edge photoluminescence, and GaAs0.975Bi0.025 shows lasing operation by optical pumping. The deep-level trap density is suppressed on the order of 1015 cm−3 because of a surfactant effect of the Bi atoms. The Bi-induced localized states generated by the interaction between spatially localized Bi states and the valence band of GaAs are continuously located up to ~90 meV from the valence band with a density of ~1 × 1017 cm−3. Despite concerns regarding the degradation of the hole mobility due to scattering at these Bi-induced localized states, the p-type doping masks the contribution of the Bi-induced states to the hole mobility, and a high hole mobility of 200 cm2 V−1 s−1 is achieved. By characterizing the superlattices, (Al)GaAs/GaAs1−x Bi x heterointerfaces have been proven to be smooth without distinct segregation and stable up to 700 °C. While the interface state density of ~9 × 1011 cm−2 eV−1 in a GaAs/GaAs1−x Bi x heterointerface cannot be reduced by annealing, it can be reduced by half by the insertion of a Bi graded layer into the heterointerface, presumably due to the mitigation of the differences in the metallic GaAs1−x Bi x and nonmetallic GaAs surfaces.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Oe, K., Okamoto, H.: New semiconductor alloy GaAs1−x Bi x grown by metal organic vapor phase epitaxy. Jpn. J. Appl. Phys. 37, L1283 (1998)

    Article  Google Scholar 

  2. Yoshimoto, M., Murata, S., Chayahara, A., Horino, Y., Saraie, J., Oe, K.: Metastable GaAsBi alloy grown by molecular beam epitaxy. Jpn. J. Appl. Phys. 42, L1235 (2003)

    Article  CAS  Google Scholar 

  3. Francoeur, S., Seong, M.-J., Mascarenhas, A., Tixier, S., Adamcyk, M., Tiedje, T.: Band gap of GaAs1−x Bi x , 0<x<3.6%. Appl. Phys. Lett. 82, 3874 (2003)

    Article  CAS  Google Scholar 

  4. Huang, W., Oe, K., Feng, G., Yoshimoto, M.: Molecular-beam epitaxy and characteristics of GaN y As1−xy Bi x . J. Appl. Phys. 98, 053505 (2005)

    Article  Google Scholar 

  5. Tixier, S., Webster, S.E., Young, E.C., Tiedje, T., Francoeur, S., Mascarenhas, A., Wei, P., Schiettekatte, F.: Band gaps of the dilute quaternary alloys GaN x As1−xy Bi y and Ga1−y In y N x As1−x . Appl. Phys. Lett. 86, 112113 (2005)

    Article  Google Scholar 

  6. Feng, G., Yoshimoto, M., Oe, K., Chayahara, A., Horino, Y.: New III–V semiconductor InGaAsBi alloy grown by molecular beam epitaxy. Jpn. J. Appl. Phys. 44, L1161 (2005)

    Article  CAS  Google Scholar 

  7. Petropoulos, J.P., Zhong, Y., Zide, J.M.O.: Optical and electrical characterization of InGaBiAs for use as a mid-infrared optoelectronic material. Appl. Phys. Lett. 99, 031110 (2011)

    Article  Google Scholar 

  8. Yoshida, J., Kita, T., Wada, O., Oe, K.: Temperature dependence of GaAs1−x Bi x band gap studied by photoreflectance spectroscopy. Jpn. J. Appl. Phys. 42, 371 (2003)

    Article  CAS  Google Scholar 

  9. Yoshimoto, M., Oe, K.: Molecular beam epitaxy of GaAsBi and related quaternary alloys. In: Henini, M. (ed.) Molecular Beam Epitaxy, pp. 159–170. Elsevier, Amsterdam (2013, in press)

    Google Scholar 

  10. Alberi, K., Dubon, O.D., Walukiewicz, W., Yu, K.M., Bertulis, K., Kroktus, A.: Valence band anticrossing in GaBi x As1−x . Appl. Phys. Lett. 91, 051909 (2007)

    Article  Google Scholar 

  11. Broderick, C.A., Usman, M., Sweeney, S.J., O’Reilly, E.P.: Band engineering in dilute nitride and bismide semiconductor lasers. Semicond. Sci. Technol. 27, 094011 (2012)

    Article  Google Scholar 

  12. Ptak, A.J., France, R., Jiang, C.-S., Reedy, R.C.: Effects of bismuth on wide-depletion-width GaInNAs solar cells. J. Vac. Sci. Technol. B 26, 1053 (2008)

    Article  CAS  Google Scholar 

  13. Tominaga, Y., Oe, K., Yoshimoto, M.: Low temperature dependence of oscillation wavelength in GaAs1−x Bi x laser by photo-pumping. Appl. Phys. Express 3, 062201 (2010)

    Article  Google Scholar 

  14. Young, D.L., Geisz, J.F., Coutts, T.J.: Nitrogen-induced decrease of the electron effective mass in GaAs1−x N x thin films measured by thermomagnetic transport phenomena. Appl. Phys. Lett. 82, 1236 (2003)

    Article  CAS  Google Scholar 

  15. Shan, W., Walukiewicz, W., Yu, K.M., Ager III, J.W., Haller, E.E., Geisz, J.F., Friedman, D.J., Olson, J.M., Kurtz, S.R., Xin, H.P., Tu, C.W.: Band anticrossing in III-N-V alloys. Phys. Status Solidi B 223, 75 (2001)

    Article  CAS  Google Scholar 

  16. Harris Jr., J.S., Yuen, H., Bank, S., Wistey, M., Lordi, V., Gugov, T., Bae, H., Goddaard, L.: MBE growth and characterization of dilute nitride III–V alloys. In: Henini, M. (ed.) Dilute Nitride Semiconductors, pp. 1–92. Elsevier, Amsterdam (2005)

    Chapter  Google Scholar 

  17. Alberi, K., Wu, J., Walukiewicz, W., Yu, K.M., Dubon, O.D., Watkins, S.P., Wang, C.X., Liu, X., Cho, Y.-J., Furdyna, J.: Valence-band anticrossing in mismatched III–V semiconductor alloys. Phys. Rev. B 75, 045203 (2007)

    Article  Google Scholar 

  18. Lu, X., Beaton, D.A., Lewis, R.B., Tiedje, T., Zhang, Y.: Composition dependence of photoluminescence of GaAs1−x Bi x alloys. Appl. Phys. Lett. 95, 041903 (2009)

    Article  Google Scholar 

  19. Pettinari, G., Polimeni, A., Capizzi, M., Blokland, J.H., Christianen, P.C.M., Maan, J.C., Young, E.C., Tiedje, T.: Influence of bismuth incorporation on the valence and conduction band edges of GaAs1−x Bi x . Appl. Phys. Lett. 92, 262105 (2008)

    Article  Google Scholar 

  20. Mohmad, A.R., Bastiman, F., Hunter, C.J., Ng, J.S., Sweeney, S.J., David, J.P.R.: The effect of Bi composition to the optical quality of GaAs1−x Bi x . Appl. Phys. Lett. 99, 042107 (2011)

    Article  Google Scholar 

  21. Imhof, S., Thränhardt, A., Chernikov, A., Koch, M., Köster, N.S., Kolata, K., Chatterjee, S., Koch, S.W., Lu, X., Johnson, S.R., Beaton, D.A., Tiedje, T., Rubel, O.: Clustering effects in Ga(AsBi). Appl. Phys. Lett. 96, 131115 (2010)

    Article  Google Scholar 

  22. Kudrawiec, R., Syperek, M., Poloczek, P., Misiewicz, J., Mari, R.H., Shafi, M., Henini, M., Galvao Gobato, Y., Novikov, S.V., Ibanez, J., Schmidbauer, M., Molina, S.I.: Carrier localization in GaBiAs probed by photomodulated transmittance and photoluminescence. J. Appl. Phys. 106, 023518 (2009)

    Article  Google Scholar 

  23. Beaton, D.A., Lewis, R.B., Masnadi-Shirazi, M., Tiedje, T.: Temperature dependence of hole mobility in GaAs1−x Bi x alloys. J. Appl. Phys. 108, 083708 (2010)

    Article  Google Scholar 

  24. Kini, R.N., Ptak, A.J., Fluegel, B., France, R., Reedy, R.C., Mascarenhas, A.: Effect of Bi alloying on the hole transport in the dilute bismide alloy GaAs1−x Bi x . Phys. Rev. B 83, 075307 (2011)

    Article  Google Scholar 

  25. Pillai, M.R., Kim, S.S., Ho, S.T., Barnett, S.A.: Growth of In x Ga1−x As/GaAs heterostructures using Bi as a surfactant. J. Vac. Sci. Technol. B 18, 1232 (2000)

    Article  CAS  Google Scholar 

  26. Feng, G., Oe, K., Yoshimoto, M.: Temperature dependence of Bi behavior in MBE growth of InGaAs/InP. J. Cryst. Growth 121, 301–302 (2007)

    Google Scholar 

  27. Tixier, S., Adamcyk, M., Tiedje, T., Francoeur, S., Mascarenhas, A., Wei, P., Schiettekatte, F.: Molecular beam epitaxy growth of GaAs1−x Bi x . Appl. Phys. Lett. 82, 2245 (2003)

    Article  CAS  Google Scholar 

  28. Punkkinen, M.P.J., Laukkanen, P., Komsa, H.-P., Ahola-Tuomi, M., Räsänen, N., Kokko, K., Kuzmin, M., Adell, J., Sadowski, J., Perälä, R.E., Ropo, M., Rantala, T.T., Väyrynen, I.J., Pessa, M., Vitos, L., Kollár, J., Mirbt, S., Johansson, B.: Bismuth-stabilized (2×1) and (2×4) reconstructions on GaAs(100) surfaces: Combined first-principles, photoemission, and scanning tunneling microscopy study. Phys. Rev. B 78, 195304 (2008)

    Article  Google Scholar 

  29. Pashley, M.D.: Electron counting model and its application to island structures on molecular-beam epitaxy grown GaAs(001) and ZnSe(001). Phys. Rev. B 40, 10481 (1989)

    Article  CAS  Google Scholar 

  30. Laukkanen, P.: Unusual Bi-induced surfaces of III–V semiconductors. 1st International Workshop on Bismuth Containing Semiconductor, Ann Arbor. http://www.bismides.net/ (2010)

  31. Neugebauer, J., Zywietz, T.K., Scheffler, M., Northrup, J.E., Chen, H., Feenstra, R.M.: Adatom kinetics on and below the surface: The existence of a new diffusion channel. Phys. Rev. Lett. 90, 056101 (2003)

    Article  Google Scholar 

  32. Ahola-Tuomi, M., Laukkanen, P., Perälä, R.E., Kuzmin, M., Pakarinen, J., Väyrynen, I.J., Adell, M.: Structural properties of Bi-terminated GaAs(001) surface. Surf. Sci. 600, 2349 (2006)

    Article  CAS  Google Scholar 

  33. Kent, P.R.C.: Electronic structure evolution of dilute III–V nitride alloys. In: Henini, M. (ed.) Dilute Nitride Semiconductors, pp. 393–413. Elsevier, Amsterdam (2005)

    Chapter  Google Scholar 

  34. Tominaga, Y., Kinoshita, Y., Oe, K., Yoshimoto, M.: Structural investigation of GaAs1−x Bi x /GaAs multiquantum wells. Appl. Phys. Lett. 93, 131915 (2008)

    Article  Google Scholar 

  35. Yoshimoto, M., Huang, W., Feng, G., Oe, K.: New semiconductor alloy GaNAsBi with temperature-insensitive bandgap. Phys. Status Solidi B 243, 1421 (2006)

    Article  CAS  Google Scholar 

  36. Takehara, Y., Yoshimoto, M., Huang, W., Saraie, J., Oe, K., Chayahara, A., Horino, Y.: Lattice distortion of GaAsBi alloy grown on GaAs by molecular beam epitaxy. Jpn. J. Appl. Phys. 45, 67 (2006)

    Article  CAS  Google Scholar 

  37. Madelung, O. (ed.): Semiconductor-Group IV Elements and III–V Compound, p. 101. Springer, Berlin (1991)

    Google Scholar 

  38. Ueda, O., Fujii, T., Nakata, Y.: TEM investigation of defects in GaAsSb crystal grown on (001) InP substrates by molecular beam epitaxy. In: Sumino, K. (ed.) Defect Control in Semiconductors, pp. 1091–1096. Elsevier, North Holland (1990)

    Chapter  Google Scholar 

  39. Ueda, O., Tominaga, Y., Ikenaga, N., Yoshimoto, M., Oe, K.: Structural evaluation ofGaAs1−x Bi x mixed crystals by TEM. Proceedings of the 23rd International Conference on Indium Phosphide and Related Materials (IPRM2011), p. 1, Berlin, INSPEC Accession Number: 12172587 (2011)

    Google Scholar 

  40. Yu, P.Y., Cardona, M.: Fundamental of Semiconductors, p. 354. Springer, Berlin (2005)

    Book  Google Scholar 

  41. Itoh, M., Tominaga, Y., Oe, K., Yoshimoto, M.: Quantitative estimation of density of Bi-induced localized states in GaAs1−x Bi x grown by molecular beam epitaxy. J. Cryst. Growth 378, 73 (2013)

    Article  Google Scholar 

  42. Vurgaftman, I., Meyer, J.R.: Band parameters for nitrogen-containing semiconductors. J. Appl. Phys. 94, 3675 (2003)

    Article  CAS  Google Scholar 

  43. Kado, K., Fuyuki, T., Yamada, K., Oe, K., Yoshimoto, M.: High hole mobility in GaAs1−x Bi x alloys. Jpn. J. Appl. Phys. 51, 040204 (2012)

    Article  Google Scholar 

  44. Shiobara, S., Hashizume, T., Hasegawa, H.: Deep level and conduction mechanism in low-temperature GaAs grown by molecular beam epitaxy. Jpn. J. Appl. Phys. 35, 1159 (1996)

    Article  CAS  Google Scholar 

  45. Luysberg, M., Shon, H., Prasad, A., Specht, P., Liliental-Weber, Z., Weber, E.R., Gebauer, J., Krause-Rwhberg, R.: Effects of the growth temperature and As/Ga flux ratio on the incorporation of excess As into low temperature grown GaAs. J. Appl. Phys. 83, 561 (1998)

    Article  CAS  Google Scholar 

  46. Kunzer, M., Jost, W., Kaufmann, U., Hobgood, H.M., Thomas, R.N.: Identification of the BiGa heteroantisite defect in GaAs:Bi. Phys. Rev. B 48, 4437 (1993)

    Article  CAS  Google Scholar 

  47. Kimerling, L.C., Patel, J.R.: Defect states associated with dislocations in silicon. Appl. Phys. Lett. 34, 73 (1979)

    Article  CAS  Google Scholar 

  48. Weber, E.R., Enness, H., Kaufmann, U., Windscheif, J., Schneider, Y., Wosinski, T.: Identification of AsGa antisites in plastically deformed GaAs. J. Appl. Phys. 53, 6140 (1982)

    Article  CAS  Google Scholar 

  49. Lagowski, J., Lin, D.G., Chen, T.P., Skowronski, M., Gatos, H.C.: Native hole trap in bulk GaAs and its association with the double-charge state of the arsenic antisite defect. Appl. Phys. Lett. 47, 929 (1985)

    Article  CAS  Google Scholar 

  50. Fuyuki, T., Kashiyama, S., Tominaga, Y., Oe, K., Yoshimoto, M.: Deep-hole traps in p-type GaAs1−x Bi x grown by molecular beam epitaxy. Jpn. J. Appl. Phys. 50, 080203 (2011)

    Article  Google Scholar 

  51. Jiang, Z., Beaton, D.A., Lewis, R.B., Basile, A.F., Tiedje, T., Mooney, P.M.: Deep level defects in GaAs1−x Bi x /GaAs heterostructures. Semicond. Sci. Technol. 26, 055020 (2011)

    Article  Google Scholar 

  52. Laukkanen, P., Ahola-Tuomi, M., Kuzmin, M., Perala, R.E., Vayrynen, I.J., Tukiainen, A., Pakarinen, J., Saarinen, M., Pessa, M.: Structural properties of Bi-stabilized reconstructions of GaInAs(100) surface. Appl. Phys. Lett. 90, 082101 (2007). and references therein

    Google Scholar 

  53. Teissier, R., Sicault, D., Harmand, J.C., Ungaro, G., Le Roux, G., Largeau, L.: Temperature-dependent valence band offset and band-gap energies of pseudomorphic GaAsSb on GaAs. J. Appl. Phys. 89, 5473 (2001)

    Article  CAS  Google Scholar 

  54. Laukkanen, P., Punkkinen, M.P.J., Kosma, H.-P., Ahola-Tuomi, M., Kokko, K., Kuzumin, M., Adell, J., Sadowski, J., Perälä, R.E., Ropo, M., Rantala, T.T., Väyrynen, I.J., Pessa, M., Vitos, L., Kollár, J., Mirbt, S., Johansson, B.: Anomalous bismuth-stabilized (2×1) reconstructions on GaAs(100) and InP(100) surfaces. Phys. Rev. Lett. 100, 086101 (2008)

    Article  CAS  Google Scholar 

  55. Fuyuki, T., Tominaga, Y., Oe, K., Yoshimoto, M.: Growth of GaAs1−x Bi x /Al y Ga1−y As multi-quantum-well structures. Jpn. J. Appl. Phys. 49, 070211 (2010)

    Article  Google Scholar 

  56. Fan, D., Zeng, Z., Hu, X., Dorogan, V.G., Li, C., Benamara, M., Hawkridge, M.E., Mazur, Y.I., Yu, S.-Q., Johnson, S.R., Wang, Z.M., Salamo, G.J.: Molecular beam epitaxy growth of GaAsBi/GaAs/AlGaAs separate confinement heterostructures. Appl. Phys. Lett. 101, 181103 (2012)

    Article  Google Scholar 

  57. Cho, Y.-H., Choe, B.-D., Kim, Y., Lim, H.: Interface states in In0.5Ga0.5P/Al x Ga1−x As heterostructures grown by liquid phase epitaxy. J. Appl. Phys. 81, 7362 (1997)

    Article  CAS  Google Scholar 

  58. Fuyuki, T., Kashiyama, S., Oe, K., Yoshimoto, M.: Interface states in p-type GaAs/GaAs1−x Bi x heterostructure. Jpn. J. Appl. Phys. 51, 11PC02 (2012)

    Article  Google Scholar 

  59. Nicollian, E.H., Brews, J.R.: MOS Physics and Technology, p. 183. Wiley, New York (2003)

    Google Scholar 

  60. Hossain, N., Marco, I.P., Jin, S.R., Hild, K., Sweeney, S.J., Lewis, R.B., Beaton, D.A., Tiedje, T.: Recombination mechanisms and band alignment of GaAs1−x Bi x /GaAs light emitting diodes. Appl. Phys. Lett. 100, 051105 (2012)

    Article  Google Scholar 

  61. Usman, M., Broderick, C.A., Lindsay, A., O’Reilly, E.P.: Tight-binding analysis of the electronic structure of dilute bismide alloys of GaP and GaAs. Phys. Rev. B 84, 245202 (2011)

    Article  Google Scholar 

  62. Krispin, P., Spuruytte, S.G., Harris, J.S., Ploog, K.H.: Electrical depth profile of p-type GaAs/Ga(As, N)/GaAs heterostructures determined by capacitance-voltage measurements. J. Appl. Phys. 88, 4153 (2000)

    Article  CAS  Google Scholar 

  63. Tominaga, Y., Oe, K., Yoshimoto, M.: Variations in the abruptness at GaAs1−x Bi x /GaAs heterointerfaces caused by thermal annealing. In: Extract Abstract 38th International Symposium on Compound Semiconductor, p. 426 (2011)

    Google Scholar 

  64. Duke, C.B.: Semiconductor surface reconstruction: The structural chemistry of two-dimensional surface compounds. Chem. Rev. 96, 1237 (1996)

    Article  CAS  Google Scholar 

  65. Chadi, D.J.: Atomic structure of GaAs(100)-(2×1) and (2×4) reconstructed surfaces. J. Vac. Sci. Technol. A 5, 834 (1987)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partly supported by Grants-in-Aid for Scientific Research (A) and (B) from the Japan Society for the Promotion of Science. The authors would like to express their appreciation to Dr. W. Huang, Dr. G. Feng, Dr. Y. Takehara, Dr. Y. Tominaga, Mr. S. Murata, Mr. Y. Kinoshita, Mr. M. Yamakawa, Mr. K. Yamada, Mr. M. Itoh, Mr. S. Kashiyama, and Mr. M. Kado for their contribution to this work. The authors would also like to acknowledge Prof. O. Ueda, Kanazawa Institute of Technology, for his TEM observation. In addition, the authors would like to express their deep appreciation to Emeritus Prof. K. Oe, the pioneer of GaAsBi, for his continuous encouragement and stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Yoshimoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Yoshimoto, M., Fuyuki, T. (2013). Localized States in GaAsBi and GaAs/GaAsBi Heterostructures. In: Li, H., Wang, Z. (eds) Bismuth-Containing Compounds. Springer Series in Materials Science, vol 186. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8121-8_9

Download citation

Publish with us

Policies and ethics