Skip to main content

Bounded Stochastic Perturbations May Induce Nongenetic Resistance to Antitumor Chemotherapy

  • Chapter
  • First Online:
Bounded Noises in Physics, Biology, and Engineering

Abstract

Recent deterministic models suggest that for solid and nonsolid tumors the delivery of constant continuous infusion therapy may induce multistability in the tumor size. In other words, therapy, when not able to produce tumor eradication, may at least lead to a small equilibrium that coexists with a far larger one. However, bounded stochastic fluctuations affect the drug concentration profiles, as well as the actual delivery scheduling, and other factors essential to tumor viability (e.g., proangiogenic factors). Through numerical simulations, and under various regimens of delivery, we show that the tumor volume during therapy can undergo transitions to the higher equilibrium value induced by a bounded noise perturbing various biologically well-defined parameters. Finally, we propose to interpretate the above phenomena as a new kind of resistance to chemotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Indeed, the noise-induced transitions theory usually refers to transitions to/from multimodality in steady state probability densities.

References

  1. Tuerk, D., Szakacs, G.: Curr. Op. Drug Disc. Devel. 12, 246 (2009)

    Google Scholar 

  2. Kimmel, M., Swierniak, A.: Lect. Note Math. 1872, 185 (2006)

    Article  MathSciNet  Google Scholar 

  3. Tunggal, J.K., Cowan, D.S.M., Shaikh, H., Tannock, I.F.: Clin. Cancer Res. 5, 1583 (1999)

    Google Scholar 

  4. Cowan, D.S.M., Tannock, I.F.: Int. J. Cancer 91, 120 (2001)

    Article  Google Scholar 

  5. Jain, R.K.: Ann. Rev. Biom. Eng. 1, 241 (2001)

    Article  Google Scholar 

  6. Jain, R.K.: J. Contr. Release 74, 7 (2001)

    Article  Google Scholar 

  7. Wijeratne, N.S., Hoo, K.A.: Cell Prolif. 40, 283 (2007)

    Article  Google Scholar 

  8. Carmeliet, P., Jain, R.K.: Nature 407, 249 (2000)

    Article  Google Scholar 

  9. Tzafriri, A.R., Levin, A.D., Edelman, E.R.: Cell Prolif. 42, 348 (2009)

    Article  Google Scholar 

  10. Netti, P.A., Berk, D.A., Swartz, M.A., Grodzinsky, A.J., Jain, R.K.: Cancer Res. 60, 2497 (2000)

    Google Scholar 

  11. Cosse, J.P., Ronvaux, M., Ninane, N., Raes, M.J., Michiels, C.: Neoplasia 11, 976 (2009)

    Google Scholar 

  12. Araujo, R.P., McElwain, D.L.S.: J. Theor. Biol. 228, 335 (2004)

    Article  MathSciNet  Google Scholar 

  13. d’Onofrio, A., Gandolfi, A.: J. Theor. Biol. 264, 253 (2010)

    Google Scholar 

  14. d’Onofrio, A., Gandolfi, A., Gattoni, S.: Phys. A 391, 6484–6496 (2012)

    Google Scholar 

  15. d’Onofrio, A., Gandolfi, A.: Phys Rev E 82, Art.n. 061901 (2010)

    Google Scholar 

  16. Norton, L., Simon, R.: Cancer Treat. Rep. 61, 1303 (1977)

    Google Scholar 

  17. Kramers, H.A.: Physica 7, 284 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  18. Horstemke, W., Lefever, H.: Noise-Induced Transitions in Physics, Chemistry and Biology. Springer, Heidelberg (2007)

    Google Scholar 

  19. d’Onofrio, A.: Noisy oncology. In: Venturino, E., Hoskins, R.H. (eds.) Aspects of Mathematical Modelling. Birkhauser, Boston (2006)

    Google Scholar 

  20. d’Onofrio, A.: Appl. Math. Lett. 21, 662 (2008)

    Google Scholar 

  21. d’Onofrio, A.: Phys. Rev. E 81, 021923 (2010)

    Google Scholar 

  22. Fuentes, M.A., Toral, R., Wio, H.S.: Phys. A 295, 114 (2001)

    Article  MATH  Google Scholar 

  23. Fuentes, M.A., Wio, H.S., Toral, R.: Phys. A 303, 91 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Revelli, J.A., Sanchez, A.D., Wio, H.S.: Phys. D 168–169, 165 (2002)

    Article  Google Scholar 

  25. Wio, H.S., Toral, R.: Phys. D 193, 161–168 (2004)

    Article  MATH  Google Scholar 

  26. Bobryk, R.B., Chrzeszczyk, A.: Phys. A 358, 263 (2005)

    Article  Google Scholar 

  27. Wheldon, T.: Mathematical Models in Cancer Research. Hilger Publishing, Boston (1989)

    Google Scholar 

  28. Castorina, P., Zappala’, D.: Phys. A Stat. Mech. Appl. 365, 1–4 (2004)

    Google Scholar 

  29. Molski, M., Konarski, J.: Phys. Rev. E 68, Art. No. 021916 (2003)

    Google Scholar 

  30. Waliszewski, P., Konarski, J.: Chaos Solit. Fract. 16, 665–674 (2003)

    Article  MATH  Google Scholar 

  31. d’Onofrio, A.: Phys. D 208, 220–235 (2005)

    Google Scholar 

  32. Kane Laird, A.: Br. J. Cancer 18, 490–502 (1964)

    Article  Google Scholar 

  33. Marusic, M., Bajzer, Z., Freyer, J.P., Vuk-Pavlovic, S.: Cell Prolif. 27, 73–94 (1994)

    Article  Google Scholar 

  34. Afenya, E.K., Calderon, C.P.: Bull. Math. Biol. 62, 527–542 (2000)

    Article  Google Scholar 

  35. Skipper, H.E.: Bull. Math. Biol. 48, 253 (1986)

    MathSciNet  Google Scholar 

  36. Folkman, J.: Adv. Cancer Res. 43, 175 (1985)

    Article  Google Scholar 

  37. Carmeliet, P., Jain, R.K.: Nature 407, 249 (2000)

    Article  Google Scholar 

  38. Yancopoulos, G.D., Davis, S., Gale, N.W., Rudge, J.S., Wiegand, S.J., Holash, J.: Nature 407, 242 (2000)

    Article  Google Scholar 

  39. O’Reilly, M.S., et al.: Cell 79, 315 (1994)

    Article  Google Scholar 

  40. O’Reilly, M.S., et al.: Cell 88, 277 (1997)

    Article  Google Scholar 

  41. Folkmann, J.: Ann. Rev. Med. 57, 1 (2006)

    Article  Google Scholar 

  42. Hahnfeldt, P., Panigrahy, D., Folkman, J., Hlatky, L.: Cancer Res. 59, 4770 (1999)

    Google Scholar 

  43. Sachs, R.K., Hlatky, L.R., Hahnfeldt, P.: Math. Comput. Mod. 33, 1297 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  44. Ramanujan, S., et al.: Cancer Res. 60, 1442 (2000)

    Google Scholar 

  45. d’Onofrio, A., Gandolfi, A.: Math. Biosci. 191, 159 (2004)

    Google Scholar 

  46. d’Onofrio, A., Gandolfi, A.: Appl. Math. Comput. 181, 1155 (2006)

    Google Scholar 

  47. d’Onofrio, A., Gandolfi, A., Rocca, A.: Cell Prolif. 43, 317 (2009)

    Google Scholar 

  48. d’Onofrio, A., Gandolfi, A.: Math. Med. Bio. 26, 63 (2008)

    Google Scholar 

  49. Capogrosso Sansone, B., Scalerandi, M., Condat, C.A.: Phys. Rev. Lett. 87, 128102 (2001)

    Article  Google Scholar 

  50. Scalerandi, M., Capogrosso Sansone, B.: Phys. Rev. Lett. 89, 218101 (2002)

    Article  Google Scholar 

  51. Arakelyan, L., Vainstein, V., Agur, Z.: Angiogenesis 5, 203 (2003)

    Article  Google Scholar 

  52. Stoll, B.R., et al.: Blood 102 2555 (2003); Tee, D., DiStefano III, J.: J. Cancer Res. Clin. Oncol. 130, 15 (2004)

    Google Scholar 

  53. Chaplain, M.A.J.: The mathematical modelling of the stages of tumour development. In: Adam, J.A., Bellomo, N. (eds.) A Survey of Models for Tumor-Immune System Dynamics. Birkhauser, Boston (1997)

    Google Scholar 

  54. Anderson, A.R.A., Chaplain, M.A.J.: Bull. Math. Biol. 60, 857 (1998)

    Article  MATH  Google Scholar 

  55. De Angelis, E., Preziosi, L.: Math. Mod. Meth. Appl. Sci. 10, 379 (2000)

    MATH  Google Scholar 

  56. Jackson, T.L.: J. Math. Biol. 44, 201 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  57. Forys, U., Kheifetz, Y., Kogan, Y.: Math. Biosci. Eng. 2, 511 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  58. Kevrekidis, P.G., Whitaker, N., Good, D.J., Herring, G.J.: Phys. Rev. E 73, 061926 (2006)

    Article  MathSciNet  Google Scholar 

  59. Agur, Z., Arakelyan, L., Daugulis, P., Ginosar, Y.: Discr. Cont. Dyn. Syst. B4, 29 (2004)

    MathSciNet  Google Scholar 

  60. Kerbel, R.S., Kamen, B.A.: Nat. Rev. Cancer 4, 423 (2004)

    Article  Google Scholar 

  61. Horstemke, W., Lefever, R.: Phys. Lett. 64A, 19 (1977)

    Article  Google Scholar 

  62. Lefever, R., Horsthemke, H.: Bull. Math. Biol. 41, 469 (1979)

    MATH  Google Scholar 

  63. d’Onofrio, A., Tomlinson, I.P.M.: J. Theor. Biol. 24, 367 (2007)

    Google Scholar 

  64. Deza, R., Wio, H.S., Fuentes, M.A.: Noise-induced phase transitions: effects of the noises statistics and spectrum. In: Nonequilibrium Statistical Mechanics and Nonlinear Physics: XV Conference on Nonequilibrium Statistical Mechanics and Nonlinear Physics, AIP Conf. Proc. 913, pp. 62–67 (2007)

    Google Scholar 

  65. Cai, G.Q., Wu, C.: Probabilist. Eng. Mech. 87, 17–203 (2004)

    Google Scholar 

  66. Cai, G.Q., Lin, Y.K.: Phys. Rev. E 54, 299–203 (1996)

    Article  Google Scholar 

  67. A. Rescigno, Pharm Res 35, 363 (1997)

    Article  Google Scholar 

  68. Lansky, P., Lanska, V., Weiss, M.: J. Contr. Release 100, 267 (2004); Ditlevsen, S., de Gaetano, A.: Bull. Math. Biol. 67, 547 (2005)

    Google Scholar 

  69. Csajka, C., Verotta, D.: J. Pharmacokin. Pharmacodyn. 33, 227 (2006)

    Article  Google Scholar 

  70. Browder, T., Butterfiled, C.E., Kraling, B.M., Shi, B., Marshall, B., O’Reilly, M.S., Folkman, J.: Cancer Res. 60, 1878 (2000)

    Google Scholar 

  71. Hahnfeldt, P., Folkman, J., Hlatky, L.: J. Theor. Biol. 220, 545 (2003)

    Article  Google Scholar 

  72. Li, J., Nekka, F.: J. Pharmacokin. Pharmacodyn. 34, 115 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

The work of A. d’Onofrio was conducted within the framework of the EU Integrated Projects “Advancing Clinico-Genomic Trials on Cancer ACGT” and “P-Medicine.” This work was also partially supported by MIUR-Italy, PRIN 2008RSZPYY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto d’Onofrio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

d’Onofrio, A., Gandolfi, A. (2013). Bounded Stochastic Perturbations May Induce Nongenetic Resistance to Antitumor Chemotherapy. In: d'Onofrio, A. (eds) Bounded Noises in Physics, Biology, and Engineering. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, New York, NY. https://doi.org/10.1007/978-1-4614-7385-5_11

Download citation

Publish with us

Policies and ethics