Skip to main content
Book cover

Melanoma pp 1–17Cite as

Viral-Based Therapies in Melanoma

  • Living reference work entry
  • First Online:

Abstract

Viruses are microscopic organisms that can mediate antitumor activity by commandeering their natural ability to induce innate and adaptive immune responses and through genetic engineering, therapeutic transgene expression by the viral genome. Melanoma is especially well suited for viral-based therapeutics due to the underlying immunogenicity of melanoma cells and the relatively easy ability to inject established tumors in patients. Pharmacologic development of viral therapy in melanoma has focused on viral-based vaccines and oncolytic immunotherapy. In fact, the first approved oncologic application of viral-based agents has been the oncolytic virus, talimogene laherparepvec, for the treatment of advanced melanoma. This chapter will provide the biologic rationale and preclinical proof of concept for viral therapy, describe recent clinical trial results, and discuss some of the unique logistical and biosafety issues associated with the clinical application of viral-based therapeutics. The versatility of viruses as therapeutic agents coupled with a highly tolerable safety profile suggests that viral-based therapies may be important agents for further drug development alone and as part of multicomponent treatment regimens for patients with melanoma.

This is a preview of subscription content, log in via an institution.

References

  • Adamina M, Rosenthal R, Weber WP, Frey DM, Viehl CT, Bolli M, Huegli RW, Jacob AL, Heberer M, Oertli D, Marti W, Spagnoli GC, Zajac P (2010) Intranodal immunization with a vaccinia virus encoding multiple antigenic epitopes and costimulatory molecules in metastatic melanoma. Mol Ther 18:651–659

    Article  CAS  Google Scholar 

  • Aitken AS, Roy DG, Martin NT, Sad S, Bell JC, Bourgeois-Daigneault MC (2018) Brief communication; a heterologous oncolytic bacteria-virus prime-boost approach for anticancer vaccination in mice. J Immunother 41:125–129

    Article  CAS  Google Scholar 

  • Alberts P, Tilgase A, Rasa A, Bandere K, Venskus D (2018) The advent of oncolytic virotherapy in oncology: the Rigvir(R) story. Eur J Pharmacol 837:117–126

    Article  CAS  Google Scholar 

  • Alkayyal AA, Tai LH, Kennedy MA, de Souza CT, Zhang J, Lefebvre C, Sahi S, Ananth AA, Mahmoud AB, Makrigiannis AP, Cron GO, Macdonald B, Marginean EC, Stojdl DF, Bell JC, Auer RC (2017) NK-cell recruitment is necessary for eradication of peritoneal carcinomatosis with an IL12-expressing maraba virus cellular vaccine. Cancer Immunol Res 5:211–221

    Article  CAS  Google Scholar 

  • Anderson KV, Bokla L, Nusslein-Volhard C (1985) Establishment of dorsal-ventral polarity in the Drosophila embryo: the induction of polarity by the toll gene product. Cell 42:791–798

    Article  CAS  Google Scholar 

  • Andtbacka RH, Kaufman HL, Collichio F, Amatruda T, Senzer N, Chesney J, Delman KA, Spitler LE, Puzanov I, Agarwala SS, Milhem M, Cranmer L, Curti B, Lewis K, Ross M, Guthrie T, Linette GP, Daniels GA, Harrington K, Middleton MR, Miller WH Jr, Zager JS, Ye Y, Yao B, Li A, Doleman S, VanderWalde A, Gansert J, Coffin RS (2015) Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol 33:2780–2788

    Article  CAS  Google Scholar 

  • Anthony SJ, Epstein JH, Murray KA, Navarrete-Macias I, Zambrana-Torrelio CM, Solovyov A, Ojeda-Flores R, Arrigo NC, Islam A, Ali Khan S, Hosseini P, Bogich TL, Olival KJ, Sanchez-Leon MD, Karesh WB, Goldstein T, Luby SP, Morse SS, Mazet JA, Daszak P, Lipkin WI (2013) A strategy to estimate unknown viral diversity in mammals. MBio 4:e00598–e00513

    Article  Google Scholar 

  • Badrinath N, Jeong YI, Woo HY, Bang SY, Kim C, Heo J, Kang DH, Yoo SY (2018) Local delivery of a cancer-favoring oncolytic vaccinia virus via poly (lactic-co-glycolic acid) nanofiber for theranostic purposes. Int J Pharm 552:437–442

    Article  CAS  Google Scholar 

  • Bommareddy PK, Patel A, Hossain S, Kaufman HL (2017) Talimogene laherparepvec (T-VEC) and other oncolytic viruses for the treatment of melanoma. Am J Clin Dermatol 18:1–15

    Article  Google Scholar 

  • Bommareddy PK, Shettigar M, Kaufman HL (2018) Integrating oncolytic viruses in combination cancer immunotherapy. Nat Rev Immunol 18:498–513

    Article  CAS  Google Scholar 

  • Bramante S, Kaufmann JK, Veckman V, Liikanen I, Nettelbeck DM, Hemminki O, Vassilev L, Cerullo V, Oksanen M, Heiskanen R, Joensuu T, Kanerva A, Pesonen S, Matikainen S, Vähä-Koskela M, Koski A, Hemminki A (2015) Treatment of melanoma with a serotype 5/3 chimeric oncolytic adenovirus coding for GM-CSF: results in vitro, in rodents and in humans. Int J Cancer 137:1775–1783

    Article  CAS  Google Scholar 

  • Cassady KA, Gross M (2002) The herpes simplex virus type 1 U(S)11 protein interacts with protein kinase R in infected cells and requires a 30-amino-acid sequence adjacent to a kinase substrate domain. J Virol 76:2029–2035

    Article  CAS  Google Scholar 

  • Chesney J, Puzanov I, Collichio F, Singh P, Milhem MM, Glaspy J, Hamid O, Ross M, Friedlander P, Garbe C, Logan TF, Hauschild A, Lebbé C, Chen L, Kim JJ, Gansert J, Andtbacka RHI, Kaufman HL (2018) Randomized, open-label phase II study evaluating the efficacy and safety of talimogene laherparepvec in combination with Ipilimumab versus Ipilimumab alone in patients with advanced, unresectable melanoma. J Clin Oncol 36:1658–1667

    Article  Google Scholar 

  • Collichio F, Burke L, Proctor A, Wallack D, Collichio A, Long PK, Ollila DW (2018) Implementing a program of talimogene laherparepvec. Ann Surg Oncol 25:1828–1835

    Article  Google Scholar 

  • Corrales L, Glickman LH, McWhirter SM, Kanne DB, Sivick KE, Katibah GE, Woo SR, Lemmens E, Banda T, Leong JJ, Metchette K, Dubensky TW Jr, Gajewski TF (2015) Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep 11:1018–1030

    Article  CAS  Google Scholar 

  • Corrales L, McWhirter SM, Dubensky TW Jr, Gajewski TF (2016) The host STING pathway at the interface of cancer and immunity. J Clin Invest 126:2404–2411

    Article  Google Scholar 

  • Corrales L, Matson V, Flood B, Spranger S, Gajewski TF (2017) Innate immune signaling and regulation in cancer immunotherapy. Cell Res 27:96–108

    Article  CAS  Google Scholar 

  • Curti B, Richards J, Hallmeyer S, Faries M, Andtbacka R, Daniels G, Grose M, Shafren DR (2017) Abstract CT114: the MITCI (phase 1b) study: a novel immunotherapy combination of intralesional Coxsackievirus A21 and systemic ipilimumab in advanced melanoma patients with or without previous immune checkpoint therapy treatment. Cancer Res 77:CT114-CT

    Article  Google Scholar 

  • Donina S, Strele I, Proboka G, Auzinš J, Alberts P, Jonsson B, Venskus D, Muceniece A (2015) Adapted ECHO-7 virus Rigvir immunotherapy (oncolytic virotherapy) prolongs survival in melanoma patients after surgical excision of the tumour in a retrospective study. Melanoma Res 25:421–426

    Article  CAS  Google Scholar 

  • Duggan MC, Jochems C, Donahue RN, Richards J, Karpa V, Foust E, Paul B, Brooks T, Tridandapani S, Olencki T, Pan X, Lesinski GB, Schlom J, Carson Iii WE (2016) A phase I study of recombinant (r) vaccinia-CEA(6D)-TRICOM and rFowlpox-CEA(6D)-TRICOM vaccines with GM-CSF and IFN-alpha-2b in patients with CEA-expressing carcinomas. Cancer Immunol Immunother 65:1353–1364

    Article  CAS  Google Scholar 

  • Eftimie R, Dushoff J, Bridle BW, Bramson JL, Earn DJ (2011) Multi-stability and multi-instability phenomena in a mathematical model of tumor-immune-virus interactions. Bull Math Biol 73:2932–2961

    Article  CAS  Google Scholar 

  • Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G (2017) Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol 17:97–111

    Article  CAS  Google Scholar 

  • Galocha B, Hill A, Barnett BC, Dolan A, Raimondi A, Cook RF, Brunner J, McGeoch DJ, Ploegh HL (1997) The active site of ICP47, a herpes simplex virus-encoded inhibitor of the major histocompatibility complex (MHC)-encoded peptide transporter associated with antigen processing (TAP), maps to the NH2-terminal 35 residues. J Exp Med 185:1565–1572

    Article  CAS  Google Scholar 

  • Gnjatic S, Sawhney NB, Bhardwaj N (2010) Toll-like receptor agonists: are they good adjuvants? Cancer J 16:382–391

    Article  CAS  Google Scholar 

  • Harrington KJ, Michielin O, Malvehy J, Pezzani Gruter I, Grove L, Frauchiger AL, Dummer R (2017) A practical guide to the handling and administration of talimogene laherparepvec in Europe. Onco Targets Ther 10:3867–3880

    Article  Google Scholar 

  • Hiraoka K, Inagaki A, Kato Y, Huang TT, Mitchell LA, Kamijima S, Takahashi M, Matsumoto H, Hacke K, Kruse CA, Ostertag D, Robbins JM, Gruber HE, Jolly DJ, Kasahara N (2017) Retroviral replicating vector-mediated gene therapy achieves long-term control of tumor recurrence and leads to durable anticancer immunity. Neuro-Oncology 19:918–929

    Article  CAS  Google Scholar 

  • Kaufman H, Schlom J, Kantor J (1991) A recombinant vaccinia virus expressing human carcinoembryonic antigen (CEA). Int J Cancer 48:900–907

    Article  CAS  Google Scholar 

  • Kaufman HL, Flanagan K, Lee CS, Perretta DJ, Horig H (2002) Insertion of interleukin-2 (IL-2) and interleukin-12 (IL-12) genes into vaccinia virus results in effective anti-tumor responses without toxicity. Vaccine 20:1862–1869

    Article  CAS  Google Scholar 

  • Kaufman HL, DeRaffele G, Mitcham J, Moroziewicz D, Cohen SM, Hurst-Wicker KS, Cheung K, Lee DS, Divito J, Voulo M, Donovan J, Dolan K, Manson K, Panicali D, Wang E, Hörig H, Marincola FM (2005) Targeting the local tumor microenvironment with vaccinia virus expressing B7.1 for the treatment of melanoma. J Clin Investig 115:1903–1912

    Article  CAS  Google Scholar 

  • Kaufman HL, Cohen S, Cheung K, DeRaffele G, Mitcham J, Moroziewicz D, Schlom J, Hesdorffer C (2006) Local delivery of vaccinia virus expressing multiple costimulatory molecules for the treatment of established tumors. Hum Gene Ther 17:239–244

    Article  CAS  Google Scholar 

  • Kaufman HL, Kohlhapp FJ, Zloza A (2015) Oncolytic viruses: a new class of immunotherapy drugs. Nat Rev Drug Discov 14:642–662

    Article  CAS  Google Scholar 

  • Kaufman HL, Amatruda T, Reid T, Gonzalez R, Glaspy J, Whitman E, Harrington K, Nemunaitis J, Zloza A, Wolf M, Senzer NN (2016) Systemic versus local responses in melanoma patients treated with talimogene laherparepvec from a multi-institutional phase II study. J Immunother Cancer 4:12

    Article  Google Scholar 

  • Komorowski MP, McGray AR, Kolakowska A, Eng K, Gil M, Opyrchal M, Litwinska B, Nemeth MJ, Odunsi KO, Kozbor D (2016) Reprogramming antitumor immunity against chemoresistant ovarian cancer by a CXCR4 antagonist-armed viral oncotherapy. Mol Ther Oncol 3:16034

    Article  CAS  Google Scholar 

  • Larson C, Oronsky B, Varner G, Caroen S, Burbano E, Insel E, Hedjran F, Carter CA, Reid TR (2018) A practical guide to the handling and administration of personalized transcriptionally attenuated oncolytic adenoviruses (PTAVs). Oncoimmunology 7:e1478648

    Article  Google Scholar 

  • Lewis FM, Chernak E, Goldman E, Li Y, Karem K, Damon IK, Henkel R, Newbern EC, Ross P, Johnson CC (2006) Ocular vaccinia infection in laboratory worker, Philadelphia, 2004. Emerg Infect Dis 12:134–137

    Article  Google Scholar 

  • Lin L, Wei J, Chen Y, Huang A, Li KK-W, Zhang W (2014) Induction of antigen-specific immune responses by dendritic cells transduced with a recombinant lentiviral vector encoding MAGE-A3 gene. J Cancer Res Clin Oncol 140:281–289

    Article  CAS  Google Scholar 

  • Linette GP, Hamid O, Whitman ED, Nemunaitis JJ, Chesney J, Agarwala SS, Starodub A, Barrett JA, Marsh A, Martell LA, Cho A, Reed TD, Youssoufian H, Vergara-Silva A (2013) A phase I open-label study of ad-RTS-hIL-12, an adenoviral vector engineered to express hIL-12 under the control of an oral activator ligand, in subjects with unresectable stage III/IV melanoma. J Clin Oncol 31:3022

    Google Scholar 

  • Mahasa KJ, Eladdadi A, de Pillis L, Ouifki R (2017) Oncolytic potency and reduced virus tumor-specificity in oncolytic virotherapy. A mathematical modelling approach. PLoS One 12:e0184347

    Article  Google Scholar 

  • Marabelle A, Andtbacka R, Harrington K, Melero I, Leidner R, de Baere T, Robert C, Ascierto PA, Baurain JF, Imperiale M, Rahimian S, Tersago D, Klumper E, Hendriks M, Kumar R, Stern M, Ohrling K, Massacesi C, Tchakov I, Tse A, Douillard JY, Tabernero J, Haanen J, Brody J (2018) Starting the fight in the tumor: expert recommendations for the development of human intratumoral immunotherapy (HIT-IT). Ann Oncol 29:2163

    Article  CAS  Google Scholar 

  • McAneny D, Ryan CA, Beazley RM, Kaufman HL (1996) Results of a phase I trial of a recombinant vaccinia virus that expresses carcinoembryonic antigen in patients with advanced colorectal cancer. Ann Surg Oncol 3:495–500

    Article  CAS  Google Scholar 

  • Nishio N, Diaconu I, Liu H, Cerullo V, Caruana I, Hoyos V, Bouchier-Hayes L, Savoldo B, Dotti G (2014) Armed oncolytic virus enhances immune functions of chimeric antigen receptor-modified T cells in solid tumors. Cancer Res 74:5195–5205

    Article  CAS  Google Scholar 

  • Ottolino-Perry K, Diallo JS, Lichty BD, Bell JC, McCart JA (2010) Intelligent design: combination therapy with oncolytic viruses. Mol Ther 18:251–263

    Article  CAS  Google Scholar 

  • Pandha H, Harrington K, Ralph C, Melcher A, Gupta S, Akerley W, Sandborn RE, Rudin C, Rosenberg J, Kaufman D, Schmidt E, Grose M, Shafren DR (2017a) Abstract CT115: phase 1b KEYNOTE 200 (STORM study): a study of an intravenously delivered oncolytic virus, Coxsackievirus A21 in combination with pembrolizumab in advanced cancer patients. Cancer Res 77:CT115-CT

    Article  Google Scholar 

  • Pandha HS, Ralph C, Harrington K, Curti BD, Sanborn RE, Akerley WL, Gupta S, Rudin CM, Rosenberg JE, Kaufman DR, Schmidt EV, Grose M, Shafren D (2017b) Keynote-200 phase 1b: a novel combination study of intravenously delivered coxsackievirus A21 and pembrolizumab in advanced cancer patients. J Clin Oncol 35:TPS3108-TPS

    Article  Google Scholar 

  • Pelka P, Miller MS, Cecchini M, Yousef AF, Bowdish DM, Dick F, Whyte P, Mymryk JS (2011) Adenovirus E1A directly targets the E2F/DP-1 complex. J Virol 85:8841–8851

    Article  CAS  Google Scholar 

  • Pelner L, Fowler GA, Nauts HC (1958) Effects of concurrent infections and their toxins on the course of leukemia. Acta Medica Scand Suppl 338:1–47

    CAS  Google Scholar 

  • Perez OD, Logg CR, Hiraoka K, Diago O, Burnett R, Inagaki A, Jolson D, Amundson K, Buckley T, Lohse D, Lin A, Burrascano C, Ibanez C, Kasahara N, Gruber HE, Jolly DJ (2012) Design and selection of Toca 511 for clinical use: modified retroviral replicating vector with improved stability and gene expression. Mol Ther 20:1689–1698

    Article  CAS  Google Scholar 

  • Pol JG, Zhang L, Bridle BW, Stephenson KB, Resseguier J, Hanson S, Chen L, Kazdhan N, Bramson JL, Stojdl DF, Wan Y, Lichty BD (2014) Maraba virus as a potent oncolytic vaccine vector. Mol Ther 22:420–429

    Article  CAS  Google Scholar 

  • Pol JG, SAA BY, Tang N, Stephenson KB, Atherton MJ, Hanwell D, El-Warrak A, Goldstein A, Moloo B, Turner PV, Lopez R, LaFrance S, Evelegh C, Denisova G, Parsons R, Millar J, Stoll G, Martin CG, Pomoransky J, Breitbach CJ, Bramson JL, Bell JC, Wan Y, Stojdl DF, Lichty BD, McCart JA (2018) Preclinical evaluation of a MAGE-A3 vaccination utilizing the oncolytic Maraba virus currently in first-in-human trials. OncoImmunology 19:8(1):e1512329.

    Article  Google Scholar 

  • Riaz N, Havel JJ, Makarov V, Desrichard A, Urba WJ, Sims JS, Hodi FS, Martin-Algarra S, Mandal R, Sharfman WH, Bhatia S, Hwu WJ, Gajewski TF, Slingluff CL Jr, Chowell D, Kendall SM, Chang H, Shah R, Kuo F, Morris LGT, Sidhom JW, Schneck JP, Horak CE, Weinhold N, Chan TA (2017) Tumor and microenvironment evolution during immunotherapy with nivolumab. Cell 171:934–49.e16

    Article  CAS  Google Scholar 

  • Ribas A, Dummer R, Puzanov I, Vander Walde A, Andtbacka RHI, Michielin O, Olszanski AJ, Malvehy J, Cebon J, Fernandez E, Kirkwood JM, Gajewski TF, Chen L, Gorski KS, Anderson AA, Diede SJ, Lassman ME, Gansert J, Hodi FS, Long GV (2017a) Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell 170:1109–19.e10

    Article  CAS  Google Scholar 

  • Ribas A, Dummer R, Puzanov I, VanderWalde A, Andtbacka RHI, Michielin O, Olszanski AJ, Malvehy J, Cebon J, Fernandez E, Kirkwood JM, Gajewski TF, Chen L, Gorski KS, Anderson AA, Diede SJ, Lassman ME, Gansert J, Hodi FS, Long GV (2017b) Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell 170:1109–19.e10

    Article  CAS  Google Scholar 

  • Roulstone V, Pedersen M, Kyula J, Mansfield D, Khan AA, McEntee G, Wilkinson M, Karapanagiotou E, Coffey M, Marais R, Jebar A, Errington-Mais F, Melcher A, Vile R, Pandha H, McLaughlin M, Harrington KJ (2015) BRAF- and MEK-targeted small molecule inhibitors exert enhanced antimelanoma effects in combination with oncolytic reovirus through ER stress. Mol Ther 23:931–942

    Article  CAS  Google Scholar 

  • Sagiv-Barfi I, Czerwinski DK, Levy S, Alam IS, Mayer AT, Gambhir SS, Levy R (2018) Eradication of spontaneous malignancy by local immunotherapy. Sci Transl Med 10. https://doi.org/10.1126/scitranslmed.aan4488

    Article  Google Scholar 

  • Salaun B, Lebecque S, Matikainen S, Rimoldi D, Romero P (2007) Toll-like receptor 3 expressed by melanoma cells as a target for therapy? Clin Cancer Res 13:4565–4574

    Article  CAS  Google Scholar 

  • Savontaus MJ, Sauter BV, Huang TG, Woo SL (2002) Transcriptional targeting of conditionally replicating adenovirus to dividing endothelial cells. Gene Ther 9:972–979

    Article  CAS  Google Scholar 

  • Schumacher TN, Schreiber RD (2015) Neoantigens in cancer immunotherapy. Science 348:69–74

    Article  CAS  Google Scholar 

  • Senzer NN, Kaufman HL, Amatruda T, Nemunaitis M, Reid T, Daniels G, Gonzalez R, Glaspy J, Whitman E, Harrington K, Goldsweig H, Marshall T, Love C, Coffin R, Nemunaitis JJ (2009) Phase II clinical trial of a granulocyte-macrophage colony-stimulating factor–encoding, second-generation oncolytic herpesvirus in patients with unresectable metastatic melanoma. J Clin Oncol 27:5763–5771

    Article  CAS  Google Scholar 

  • Sick E, Jeanne A, Schneider C, Dedieu S, Takeda K, Martiny L (2012) CD47 update: a multifaceted actor in the tumour microenvironment of potential therapeutic interest. Br J Pharmacol 167:1415–1430

    Article  CAS  Google Scholar 

  • Silk AW, Kaufman H, Gabrail N, Mehnert J, Bryan J, Norrell J, Medina D, Bommareddy P, Shafren D, Grose M, Zloza A (2017) Abstract CT026: phase 1b study of intratumoral Coxsackievirus A21 (CVA21) and systemic pembrolizumab in advanced melanoma patients: interim results of the CAPRA clinical trial. Cancer Res 77:CT026-CT

    Article  Google Scholar 

  • Symons JA, Alcami A, Smith GL (1995) Vaccinia virus encodes a soluble type I interferon receptor of novel structure and broad species specificity. Cell 81:551–560

    Article  CAS  Google Scholar 

  • Takahashi M, Valdes G, Hiraoka K, Inagaki A, Kamijima S, Micewicz E, Gruber HE, Robbins JM, Jolly DJ, McBride WH, Iwamoto KS, Kasahara N (2014) Radiosensitization of gliomas by intracellular generation of 5-fluorouracil potentiates prodrug activator gene therapy with a retroviral replicating vector. Cancer Gene Ther 21:405–410

    Article  CAS  Google Scholar 

  • Toda M, Rabkin SD, Kojima H, Martuza RL (1999) Herpes simplex virus as an in situ cancer vaccine for the induction of specific anti-tumor immunity. Hum Gene Ther 10:385–393

    Article  CAS  Google Scholar 

  • Tuve S, Wang H, Ware C, Liu Y, Gaggar A, Bernt K, Shayakhmetov D, Li Z, Strauss R, Stone D, Lieber A (2006) A new group B adenovirus receptor is expressed at high levels on human stem and tumor cells. J Virol 80:12109–12120

    Article  CAS  Google Scholar 

  • Twitty CG, Diago OR, Hogan DJ, Burrascano C, Ibanez CE, Jolly DJ, Ostertag D (2016) Retroviral replicating vectors deliver cytosine deaminase leading to targeted 5-fluorouracil-mediated cytotoxicity in multiple human cancer types. Hum Gene Ther Methods 27:17–31

    Article  CAS  Google Scholar 

  • Wittek R (2006) Vaccinia immune globulin: current policies, preparedness, and product safety and efficacy. Int J Infect Dis 10:193–201

    Article  Google Scholar 

  • Zafar S, Parviainen S, Siurala M, Hemminki O, Havunen R, Tahtinen S, Bramante S, Vassilev L, Wang H, Lieber A, Hemmi S, de Gruijl T, Kanerva A, Hemminki A (2017) Intravenously usable fully serotype 3 oncolytic adenovirus coding for CD40L as an enabler of dendritic cell therapy. Oncoimmunology 6:e1265717

    Article  Google Scholar 

  • Zajac P, Oertli D, Marti W, Adamina M, Bolli M, Guller U, Noppen C, Padovan E, Schultz-Thater E, Heberer M, Spagnoli G (2003) Phase I/II clinical trial of a nonreplicative vaccinia virus expressing multiple HLA-A0201-restricted tumor-associated epitopes and costimulatory molecules in metastatic melanoma patients. Hum Gene Ther 14:1497–1510

    Article  CAS  Google Scholar 

  • Zhang J, Tai LH, Ilkow CS, Alkayyal AA, Ananth AA, de Souza CT, Wang J, Sahi S, Ly L, Lefebvre C, Falls TJ, Stephenson KB, Mahmoud AB, Makrigiannis AP, Lichty BD, Bell JC, Stojdl DF, Auer RC (2014) Maraba MG1 virus enhances natural killer cell function via conventional dendritic cells to reduce postoperative metastatic disease. Mol Ther 22:1320–1332

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard L. Kaufman .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Silk, A., Bommareddy, P.K., Kaufman, H.L. (2019). Viral-Based Therapies in Melanoma. In: Fisher, D., Bastian, B. (eds) Melanoma. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-7322-0_39-1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-7322-0_39-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-7322-0

  • Online ISBN: 978-1-4614-7322-0

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics