Skip to main content

Generalized Langevin Equations

  • Chapter
  • First Online:
  • 3753 Accesses

Part of the book series: Texts in Applied Mathematics ((TAM,volume 58))

Abstract

We now turn to problems in statistical mechanics where the assumption of thermal equilibrium does not apply. In nonequilibrium problems, one should in principle solve the full Liouville equation, at least approximately. There are many situations in which one attempts to do that under different assumptions and conditions, giving rise to the Euler and Navier–Stokes equations, the Boltzmann equation, the Vlasov equation, etc.

An erratum to this chapter is available at http://dx.doi.org/10.1007/978-1-4614-6980-3_10

An erratum to this chapter can be found at http://dx.doi.org/10.1007/978-1-4614-6980-3_10

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.95
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

9.9 Bibliography

  1. B. Alder and T. Wainwright, Decay of the velocity correlation function, Phys. Rev. A 1 (1970), pp. 1–12.

    Google Scholar 

  2. R. Balescu, Statistical Dynamics, Matter out of Equilibrium, Imperial College Press, London, 1997.

    Google Scholar 

  3. D. Bernstein, Optimal prediction of the Burgers equation, Mult. Mod. Sim. 6 (2007), pp. 27–52.

    Google Scholar 

  4. S. Chandrasekhar, Stochastic problems in physics and astronomy, Rev. Mod. Phys. 15 (1943), pp. 1–88; reprinted in N. Wax, Selected Papers on Noise and Stochastic Processes, Dover, New York, 1954.

    Google Scholar 

  5. A.J. Chorin, O.H. Hald, and R. Kupferman, Optimal prediction and the Mori–Zwanzig representation of irreversible processes, Proc. Natl. Acad. Sci. USA 97 (2000), pp. 2968–2973.

    Google Scholar 

  6. A.J. Chorin, O.H. Hald, and R. Kupferman, Optimal prediction with memory, Physica D, 166 (2002), pp. 239–257.

    Google Scholar 

  7. A.J. Chorin and P. Stinis, Problem reduction, renormalization, and memory, Comm. Appl. Math. Comp. Sci. 1 (2005), pp. 1–27.

    Google Scholar 

  8. D. Evans and G. Morriss, Statistical Mechanics of Nonequilibrium Liquids, Academic, New York, 1990.

    Google Scholar 

  9. G. Ford, M. Kac, and P. Mazur, Statistical mechanics of assemblies of coupled oscillators, J. Math. Phys. 6 (1965), pp. 504–515.

    Google Scholar 

  10. S. Goldstein, On diffusion by discontinuous movements and on the telegraph equation, Q. J. Mech. Appl. Math., 4 (1951), pp. 129–156.

    Google Scholar 

  11. D. Givon, R. Kupferman, and A. Stuart, Extracting macroscopic dynamics, model problems and algorithms, Nonlinearity 17 (2004), pp. R55–R127.

    Google Scholar 

  12. O. H. Hald and P. Stinis, Optimal prediction and the rate of decay of solutions of the Euler equations in two and three dimensions, Proc. Nat. Acad. Sc. USA 104 (2007), pp. 6527–6532.

    Google Scholar 

  13. P. Hohenberg and B. Halperin, Theory of dynamical critical phenomena, Rev. Mod. Phys. 49 (1977) pp. 435–479.

    Google Scholar 

  14. M. Kac, A stochastic model related to the telegrapher’s equation, Rocky Mountain J. Math. 4 (1974), pp. 497–509.

    Google Scholar 

  15. A. Majda, I. Timofeyev, and E. Vanden Eijnden, A mathematical framework for stochastic climate models, Comm. Pure Appl. Math. 54, (2001), pp. 891–947.

    Google Scholar 

  16. G. Papanicolaou, Introduction to the asymptotic analysis of stochastic equations, in Modern Modeling of Continuum Phenomena, R. DiPrima (ed.), Providence RI, 1974.

    Google Scholar 

  17. P. Stinis, Stochastic optimal prediction for the Kuramoto–Sivashinski equation, Multiscale Model. Simul. 2 (2004), pp. 580–612.

    Google Scholar 

  18. K. Theodoropoulos, Y.H. Qian and I. Kevrekidis, Coarse stability and bifurcation analysis using timesteppers: a reaction diffusion example, Proc. Natl. Acad. Sci. USA 97 (2000), pp. 9840–9843.

    Google Scholar 

  19. R. Zwanzig, Problems in nonlinear transport theory, in Systems Far from Equilibrium, L. Garrido (ed.), Springer-Verlag, New York, 1980.

    Google Scholar 

  20. R. Zwanzig, Nonlinear generalized Langevin equations, J. Statist. Phys. 9 (1973), pp. 423–450.

    Google Scholar 

  21. R. Zwanzig, Irreversible Statistical Mechanics, Oxford, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Chorin, A.J., Hald, O.H. (2013). Generalized Langevin Equations. In: Stochastic Tools in Mathematics and Science. Texts in Applied Mathematics, vol 58. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6980-3_9

Download citation

Publish with us

Policies and ethics