Skip to main content

LiDAR Remote Sensing

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of Satellite Applications

Abstract

Light detection and ranging (LiDAR), also known as laser detection and ranging (LaDAR) or optical radar, is an active remote sensing technique which uses electromagnetic energy in the optical range to detect an object (target), determine the distance between the target and the instrument (range), and deduce physical properties of the object based on the interaction of the radiation with the target through phenomena such as scattering, absorption, reflection, and fluorescence. LiDAR has many applications in the scientific, engineering, and military fields. LiDAR sensors have been deployed at fixed terrestrial stations, in mobile surface and subsurface vehicles, lighter-than-air crafts, fixed and rotary wing aircraft, satellites, interplanetary probes, and planetary landers and rovers. This chapter provides a high-level overview of the principles of operation of LiDAR technology and its main applications performed from space-based platforms such as satellite altimetry, atmospheric profiling, and on-orbit imaging and ranging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • W. Abdalati, H.J. Zwally, R. Bindschadler, B. Csatho, S.L. Farrell, H.A. Fricker, D. Harding, R. Kwok, M. Lefsky, T. Markus, A. Marshak, T. Neumann, S. Palm, B. Schutz, B. Smith, J. Spinhirne, C. Webb, The ICESat-2 laser altimetry mission. Proc. IEEE 98(5), 735–751 (2010)

    Google Scholar 

  • J.B. Abshire, X. Sun, H. Riris, J.M. Sirota, J.F. McGarry, S. Palm, D. Yi, P. Liiva, Geoscience laser altimeter system (GLAS) on the ICESat mission: on-orbit measurement performance. Geophys. Res. Lett. 32, L21S02 (2005)

    Google Scholar 

  • C.O. Alley, P.L. Bender, R.F. Chang, D.G. Currie, R.H. Dicke, J.E. Faller, W.M. Kaula, G.J.F. MacDonald, J.D. Mulholland, H.H. Plotkin, S.K. Poultney, D.T. Wilkingson, I. Winer, W. Carrion, T. Johnson, P. Spadin, L. Robinson, E. Joseph Wampler, D. Wiebrr, E. Silverberg, C. Steggerda, J. Mullendore, J. Bayner, W. Williams, B. Warner, H. Richardson, B. Bopp, Laser ranging retroreflector. Section 7, of Apollo 11 Preliminary Science Report. NASA SP 214 (1969)

    Google Scholar 

  • A. Ansmann, U. Wandinger, O. Le Rille, D. Lajas, A.G. Straume, Particle backscatter and extinction profiling with the spaceborne high-spectral-resolution Doppler lidar ALADIN: methodology and simulations. Appl. Opt. 46(26), 6606–6622 (2007)

    Google Scholar 

  • M.D. Behn, M.T. Zuber, A comparison of ocean topography derived from the Shuttle Laser Altimeter-01 and TOPEX/POSEIDON. IEEE Trans. Geosci. Remote Sens. 38(3), 1425–1438 (2000)

    Google Scholar 

  • P.L. Bender, D.G. Currie, R.H. Dickey, D.H. Eckhardt, J.E. Faller, W.M. Kaula, J.D. Mulholland, H.H. Plotkin, S.K. Poultney, E.C. Silverberg, D.T. Wilkinson, J.G. Williams, C.O. Alley, The lunar ranging experiment. Science 182(4109), 229–238 (1973). New Series

    Google Scholar 

  • J.L. Bufton, Laser altimetry measurements from aircraft and spacecraft. Proc. IEEE 77(3), 463–477 (1989)

    Google Scholar 

  • C. Carabajal, D.J. Hardin, S.B. Luthcke, W. Fong, S.C. Rowton, J.J. Frawley, Processing of shuttle laser altimeter range and return pulse data in support of SLA-02, in Proceedings of the ISPRS Workshop Mapping Surface Structure and Topography by Airborne and Spaceborne Lasers, Portland, 1999

    Google Scholar 

  • W.E. Carter, The lunar laser ranging pointing problem. Unpublished doctoral dissertation, University of Arizona, Tucson, 1973

    Google Scholar 

  • W.E. Carter, R.L. Shrestha, K.C. Slatton, Geodetic laser scanning. Phys. Today 60(12), 41–49 (2007)

    Google Scholar 

  • J.F. Cavanaugh, J.C. Smith, X. Sun, A.E. Bartels, L. Ramos-Izquierdo, D.J. Krebs, J.F. McGarry, R. Trunzo, A.M. Novo-Gradac, J.L. Britt, J. Karsh, R.B. Katz, A.T. Lukermire, R. Szymkiewicz, D.L. Berry, J.P. Swinski, G.A. Neumann, M.T. Zuber, D. Smith, The Mercury laser altimeter instrument for the MESSENGER mission. Space Sci. Rev. 131(1–4), 451–479 (2007)

    Google Scholar 

  • M.L. Chanin, A. Hauchecorne, C. Malique, D. Nedeljkovic, J.E. Blamont, M. Desbois, G. Tulinov, V. Melnikov, Premiers résultats du lidar Alissa embarqué à bord de la station Mir. C.R. Acad. Sci. Ser. IIA Earth Planet Sci. 328(6), 359–366 (1999)

    Google Scholar 

  • T.D. Colea, A.F. Chenga, M. Zuberb, D. Smith, The laser rangefinder on the near earth asteroid rendezvous spacecraft, in Acta Astronautica. Second IAA International Conference on Low-Cost Planetary Missions, Laurel, vol. 39, Issue no 1–4, pp. 303–313, July–Aug 1996

    Google Scholar 

  • T.K. Cossio, K.C. Slatton, W.E. Carter, K.Y. Shrestha, D. Harding, Predicting small target detection performance of low-SNR airborne LiDAR. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 3(4), 672–688 (2010)

    Google Scholar 

  • J.J. Degnan, 30 Years of SLR (invited paper), Proceedings of the 9th International Workshop on Laser Ranging Instrumentation, Australian Government Publishing Service, Canberra, p. 8, 1994, http://ilrs.gsfc.nasa.gov/docs/ThirtyYearsOfSatelliteLaserRanging.pdf

  • A. Deslauriers, I. Showalter, A. Montpool, R. Taylor, I. Christie, Shuttle TPS inspection using triangulation scanning technology, in Spaceborne sensors II. Proceedings of the SPIE, Orlando, Florida, USA, vol. 5798, pp. 26–33, 2005

    Google Scholar 

  • J.O. Dickey, P.L. Bender, J.E. Faller, X.X. Newhall, R.L. Ricklefs, J.G. Ries, P.J. Shelus, C. Veillet, A.L. Whipple, J.R. Wiant, J.G. Williams, C.F. Yoder, Lunar laser ranging: a continuing legacy of the Apollo program. Science 265(5171), 482–490 (1994). New Series

    Google Scholar 

  • A. Donnellan, P. Rosen, J. Ranson, H. Zebker, Deformation, ecosystem structure, and dynamics of ice (DESDynI), in Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, IGARSS, Honolulu, 2008

    Google Scholar 

  • E. Dupuis, J.C. Piedboeuf, E. Martin, Canadian activities in intelligent robotic systems: an overview, in Proceedings of International Symposium on Artificial Intelligence, Robotics and Automation in Space, Hollywood, Feb 2008

    Google Scholar 

  • Y. Durand, A. Hélière, P. Bensi, J.-L. Bézy, R. Meynart, Lidars in ESA’s earth explorer missions, in 14th Coherent Laser Radar Conference, Snowmass, 2007

    Google Scholar 

  • C. English, S. Zhu, C. Smith, S. Ruel, I. Christie, Tridar: a hybrid sensor for exploiting the complimentary nature of triangulation and LIDAR technologies, in The 8th International Symposium on Artificial Intelligence, Robotics and Automation in Space, ed. by B. Battrick. ESA SP-603 (European Space Agency, München, 2005)

    Google Scholar 

  • J.C. Fernandez-Diaz, Scientific applications of the mobile terrestrial laser scanner (M-TLS) system, M.S. thesis, Department of Civil Engineering, University of Florida, Gainesville, 2007, http://purl.fcla.edu/fcla/etd/UFE0021101. Accessed Feb 2011

  • G. Fiocco, L.D. Smullin, Detection of scattering layers in the upper atmosphere (60–140 km) by optical radar. Nature 199, 1275–1276 (1963)

    Google Scholar 

  • J. Garvin, J. Bufton, J. Blair, D. Harding, S. Luthcke, J. Frawley, D. Rowlands, Observations of the Earth’s topography from the shuttle laser altimeter (SLA): laser-pulse echo-recovery measurements of terrestrial surfaces. Phys. Chem. Earth 23(9–10), 1053–1068 (1998)

    Google Scholar 

  • Hamamatsu Corporation, Photon counting using photomultiplier tubes (2005), http://sales.hamamatsu.com/assets/applications/ETD/PhotonCounting_TPHO9001E04.pdf

  • D.J. Harding, D.B. Gesch, C.C. Carabajal, S.B. Luthcke, Application of the shuttle laser altimeter in an accuracy assessment of GTOP30, a global 1-kilometer digital elevation model, in Proceedings of the ISPRS Workshop Mapping Surface Structure and Topography by Airborne and Spaceborne Lasers, Portland, Nov 1999

    Google Scholar 

  • D.W. Harris, J.H. Berbert, NASA/MOTS optical observations of the ANNA 1B satellite, NASA Technical Note D-3174, Jan 1966

    Google Scholar 

  • W.A. Heiskanen, H. Moritz, Physical Geodesy (Freeman, San Francisco, 1967)

    Google Scholar 

  • E.O. Hulburt, Observations of a searchlight beam to an altitude of 28 kilometers. J. Opt. Soc. Am. 27, 377–382 (1937)

    Google Scholar 

  • A. Javan, W.R. Bennett, D.R. Herrott, Population inversion and continuous optical maser oscillation in a gas discharge containing a He–Ne mixture. Phys. Rev. Lett. 6, 106–110 (1961)

    Google Scholar 

  • E.A. Johnson, R.C. Meyer, R.E. Hopkins, W.H. Mock, The measurement of light scattered by the upper atmosphere from a search-light beam. J. Opt. Soc. Am. 29, 512–517 (1939)

    Google Scholar 

  • JPL, Rover camera instrument description (1997), http://starbase.jpl.nasa.gov/mpfr-m-rvreng-2_3-edr_rdr-v1.0/mprv_0001/document/rcinst.htm. Accessed Feb 2011

  • K. Kaufmann, Choosing your detector, OE Mag., Mar 2005

    Google Scholar 

  • W.M. Kaula, G. Schubert, R.E. Lingenfelter, W.L. Sjogren, W.R. Wollenhaupt, Apollo laser altimetry and inferences as to lunar structure, in Lunar Science Conference, Houston, 18 Mar 1974, Proceedings, vol. 3, (A75-39540 19-91) (Pergamon Press, New York, 1974), pp. 3049–3058

    Google Scholar 

  • L. Le Hors, Y. Toulemont, A. Hélière, Design and development of the backscatter Lidar Atlid for earthcare, in Proceedings of the International Conference on Space Optics, Toulouse, 2008

    Google Scholar 

  • G.G. Matvienko, V.E. Zuev, V.S. Shamanaev, G.P. Kokhanenko, A.M. Sutormin, A.I. Buranskii, S.E. Belousov, A.A. Tikhomirov, Lidar BALKAN-2 for the space platform ALMAZ-1B, Lidar techniques for remote sensing, in Proceedings of SPIE, vol. 2310, 1994, http://spie.org/x648.html?product_id=195859

  • F.J. McClung, R.W. Hellwarth, Giant optical pulsations from Ruby. J. Appl. Phys. 33(3), 828–829 (1962)

    Google Scholar 

  • J. McGarry, T. Zagwodzki, A brief history of satellite laser ranging: 1964 – present. Published by the Crustal Dynamics Data Information System (CDDIS), NASA Goddard Space Flight Center, Greenbelt (2005), http://cddis.gsfc.nasa.gov/ngslr/docs/gsfcslr_jm0504.pdf. Accessed Feb 2011

  • J.K. Miller, A.S. Konopliv, P.G. Antreasian, J.J. Bordi, S. Chesley, C.E. Helfrich, W.M. Owen, T.C. Wang, B.G. Williams, D.K. Yeomans, D.J. Scheeres, Determination of shape, gravity and rotational state of Asteroid 433 Eros. Icarus 155, 3–17 (2002)

    Google Scholar 

  • NASA, Mars topography, http://mola.gsfc.nasa.gov/topography.html

  • NASA, The space shuttle’s return to flight, mission STS-114 press kit (2005)

    Google Scholar 

  • National Research Council, Earth science and applications from space: national imperatives for the next decade and beyond, in Committee on Earth Science and Applications from Space: A Community Assessment and Strategy for the Future (The National Academies Press, Washington, DC, 2007). ISBN 0-309-10387-8

    Google Scholar 

  • NEPTEC, Tridar, http://www.neptec.com/media/brochures/Canadian/Space-TriDAR.pdf

  • M. Nimelman, J. Tripp, A. Allen, D.M. Hiemstra, S.A. McDonald, Spaceborne scanning lidar system (SSLS) upgrade path. Proc. SPIE 6201, 62011V-1–62U11V-10 (2006)

    Google Scholar 

  • J.C. Piedboeuf, E. Martin, M. Doyon, On-orbit servicing in Canada: advanced developments and demonstrations, in Proceedings of the 8th ESA Workshop on Advanced Space Technologies for Robotics and Automation ASTRA, Noordwijk, 2004

    Google Scholar 

  • L. Ramos-Izquierdo, V.S. Scott III, J. Connelly, S. Schmidt, W. Mamakos, J. Guzek, C. Peters, P. Liiva, M. Rodriguez, J. Cavanaugh, H. Riris, Optical system design and integration of the Lunar orbiter laser altimeter. Appl. Opt. 48, 3035–3049 (2009)

    Google Scholar 

  • F.I. Robertson, W.M. Kaula, Apollo 15 laser altimeter, Part D, Section 25, Apollo 15 Preliminary Science Report. NASA SP-289, 1972

    Google Scholar 

  • B.E. Schutz, H.J. Zwally, C.A. Shuman, D. Hancock, J.P. DiMarzio, Overview of the ICESat mission. Geophys. Res. Lett. 32, L21S01 (2005)

    Google Scholar 

  • J. Shan, C.K. Toth (eds.), Topographic Laser Ranging and Scanning: Principles and Processing (CRC Press, Boca Raton, 2009)

    Google Scholar 

  • H. Simons, Secret mapping by satellite, New Sci. 21(381) (1964)

    Google Scholar 

  • D.E. Smith, M.T. Zuber, G.A. Neumann, F.G. Lemoine, Topography of the Moon from the Clementine lidar. J. Geophys. Res. 102(E1), 1591–1611 (1997)

    Google Scholar 

  • D.E. Smith, M.T. Zuber, H.V. Frey, J.B. Garvin, J.W. Head, D.O. Muhleman, G.H. Pettengill, R.J. Phillips, S.C. Solomon, H.J. Zwally, W.B. Banerdt, T.C. Duxbury, M.P. Golombek, F.G. Lemoine, G.A. Neumann, D.D. Rowlands, O. Aharonson, P.G. Ford, A.B. Ivanov, C.L. Johnson, P.J. McGovern, J.B. Abshire, R.S. Afzal, X. Sun, Mars orbiter laser altimeter: experiment summary after the first year of global mapping of Mars. J. Geophys. Res. 106(E10), 23689–23722 (2001)

    Google Scholar 

  • D.E. Smith, M.T. Zuber, G.A. Neumann, F.G. Lemoine, E. Mazarico, M.H. Torrence, J.F. McGarry, D.D. Rowlands, J.W. Head III, T.H. Duxbury, O. Aharonson, P.G. Lucey, M.S. Robinson, O.S. Bamouin, J.F. Cavanaugh, X. Sun, P. Liiva, D. Mao, K.C. Smith, A.E. Bartels, Initial observations from the Lunar Orbiter Laser Altimeter (LOLA). Geophys. Res. Lett. 37, L18204 (2010)

    Google Scholar 

  • C.L. Smithpeter, R.O. Nellums, S.M. Lebien, G. Studor, Miniature high-resolution laser radar operating at video rates. Proc. SPIE 4035, 279–286 (2000)

    Google Scholar 

  • L.D. Smullin, G. Fiocco, Optical echoes from the Moon. Nature 194, 1267 (1962)

    Google Scholar 

  • STS-105 Shuttle press kit (2001), http://www.shuttlepresskit.com/sts-105/index.htm

  • G. Suna, K.J. Ranson, V.I. Kharuk, K. Kovacs, Validation of surface height from shuttle radar topography mission using shuttle laser altimeter. Remote Sens. Environ. 88(4), 401–411 (2003)

    Google Scholar 

  • E.H. Synge, A method of investigating the higher atmosphere. Philos. Mag. 9, 1014–20 (1930)

    Google Scholar 

  • N. Taylor, LASER: The Inventor, the Nobel Laureate, and the Thirty-Year Patent War (Simon & Schuster, New York, 2000)

    Google Scholar 

  • The International Laser Ranging Service, http://ilrs.gsfc.nasa.gov/. Accessed Feb 2011

  • N. Thomasa, T. Spohnb, J.-P. Barriotc, W. Benza, G. Beutlerd, U. Christensene, V. Dehantf, C. Fallnichg, D. Giardinih, O. Groussini, K. Gundersona, E. Hauberb, M. Hilchenbache, L. Iessj, P. Lamyk, L.-M. Laral, P. Lognonnem, J.J. Lopez-Morenol, H. Michaelisb, J. Oberstb, D. Resendesn, J.-L. Reynaudk, R. Rodrigol, S. Sasakio, K. Seiferlina, M. Wieczorekm, J. Whitbya, The BepiColombo laser altimeter (BELA): concept and baseline design. Planet. Space Sci. 55(10), 1398–1413 (2007)

    Google Scholar 

  • M.A. Tuve, E.A. Johnson, O.R. Wulf, A new experimental method for study of the upper atmosphere. J. Terrest. Magnet. 40, 452–454 (1935)

    Google Scholar 

  • J.R. Vetter, Fifty years of orbit determination, development of modern astrodynamic methods. J. Hopkins APL Tech. Dig. 27(3), 239–252 (2007)

    Google Scholar 

  • U. Wandinger, Introduction to Lidar, in Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, ed. by C. Weitkamp (Springer, New York, 2005), pp. 1–18

    Google Scholar 

  • M.J. Weber (ed.), Handbook of Lasers (CRC Press, Baco Raton, 2001). ISBN 978-1-4200-5017-2

    Google Scholar 

  • C. Weitkamp (ed.), Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere (Springer, New York, 2005)

    Google Scholar 

  • C. Werner, G. Kokhanenko, G. Matvienko, V. Shamanaev, Y. Grachjov, I. Znamenskii, U.G. Oppel, Spaceborne laser rangefinder “LORA” used as a cloud lidar. Opt. Rev. 2(3), 221–224 (1995)

    Google Scholar 

  • C. Werner, Spaceborne lidar mission, past and future, in Proceedings Conference on Lasers and Electro-optics Europe, CLEO/Europe, Hamburg, Sep 1996, p. 212

    Google Scholar 

  • J. Whiteway, L. Komguem, C. Dickinson, Observations of Mars atmospheric dust and clouds with the Lidar instrument on the phoenix mission, in Abstract on the Forth International Workshop on the Mars Atmosphere: Modeling and Observations, Paris, Feb 2011

    Google Scholar 

  • J. Whiteway, J.M. Daly, A. Carswell, T. Duck, C. Dickinson, L. Komguem, C. Cook, Lidar on the Phoenix mission to Mars. J. Geophys. Res. 113, E00A08 (2008)

    Google Scholar 

  • D.M. Winker, R.H. Couch, M.P. McCormick, An overview of LITE: NASA’s Lidar in-space technology experiment. Proc. IEEE 84(2), 164–180 (1996)

    Google Scholar 

  • D.M. Winker, W.H. Hunt, C.A. Hostetler, Status and performance of the CALIOP lidar, in Laser Radar Techniques for Atmospheric Sensing (Proceedings of the SPIE), ed. by U.N. Singh, vol. 5575, Maspalomas/Gran Canaria, 2004, pp. 8–15

    Google Scholar 

  • W.R. Wollenhaupt, W.L. Sjogren, Apollo 16 laser altimeter, Chapter 30, Part A, Apollo 16 Preliminary Science Report SP-315, 1972

    Google Scholar 

  • W.R. Wollenhaupt, W.L. Sjogren, R.E. Lingenfelter, G. Schubert, W.M. Kaula, Apollo 17 laser altimeter, Chapter 33, Part E, Apollo 17 Preliminary Science Report SP-330, 1973

    Google Scholar 

  • A.W. Yua, M.A. Stephen, S.X. Li, G.B. Shawa, A. Seasa, E. Dowdyea, E. Troupakib, P. Liivab, D. Pouliosc, K. Mascetti, Space laser transmitter development for ICESat-2 mission. Proc. SPIE 7578, 757–809 (2010)

    Google Scholar 

  • M.T. Zuber, D.E. Smith, A.F. Cheng, J.B. Garvin, O. Aharonson, T.D. Cole, P.J. Dunn, Y. Guo, F.G. Lemoine, G.A. Neumann, D.D. Rowlands, M.H. Torrance, The shape of 433 Eros from the NEAR-shoemaker laser rangefinder. Science 289, 2097 (2000)

    Google Scholar 

  • M.T. Zuber, D.E. Smith, S.C. Solomon, R.J. Phillips, S.J. Peale, J.W. Head III, S.A. Hauck II, R.L. McNutt Jr., J. Oberst, G.A. Neumann, F.G. Lemoine, X. Sun, O. Barnouin-Jha, J.K. Harmon, Laser altimeter observations from MESSENGER’s first Mercury Flyby. Science 321, 77 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Carlos Fernandez Diaz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Fernandez Diaz, J.C., Carter, W.E., Shrestha, R.L., Glennie, C.L. (2020). LiDAR Remote Sensing. In: Pelton, J., Madry, S., Camacho-Lara, S. (eds) Handbook of Satellite Applications. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6423-5_44-4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6423-5_44-4

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6423-5

  • Online ISBN: 978-1-4614-6423-5

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics

Chapter history

  1. Latest

    LiDAR Remote Sensing
    Published:
    30 June 2020

    DOI: https://doi.org/10.1007/978-1-4614-6423-5_44-4

  2. Original

    LiDAR Remote Sensing
    Published:
    08 June 2016

    DOI: https://doi.org/10.1007/978-1-4614-6423-5_44-3