Skip to main content

Abstract

Signal pathways accountable for the sensing and transduction of the metal stress signal in the cell, eventually leads to the induction of signaling molecules especially transcription factors and enzymes, followed by the expression of genes involved in the neutralization of metal stress. In order to respond to stress signals, plant cells are equipped to perceive these signals and switch them into appropriate responses, which in turn confer on plants the competence to tolerate, avoid or escape unfavorable conditions. Generally, Plant signaling pathways can be classified on the bases of their response to internal and external stimuli. Tolerance to unfavorable conditions entails harmonization of complex physiological, biochemical and molecular processes such as changes in global gene expression, protein modification and metabolite compositions. The aim of this chapter is to present: (1) the nature of chemicals which are produced following perception of metal stress and carry the message in the cell to respond either directly or indirectly by regulating the expression of genes leading to altered functions or enhance the capacity of the already existing defense metabolites; (2) to dissect the pathways in order to find the function of each component in metal stress signal. Thus, stress signaling is a vital spot in order to boost crops yield under sub-optimal conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arazi T, Kaplan B, Sunkar R, Fromm H (2000) Cyclicnucleotide- and Ca2+/calmodulin-regulated channels in plants: targets for manipulating heavy-metal tolerance, and possible physiological roles. Biochem Soc Trans 28:471–5

    PubMed  CAS  Google Scholar 

  • Ascencio J (1994) Acid phosphatase as a diagnostic tool. Commun Soil Sci Plant Anal 25:1553–1564

    CAS  Google Scholar 

  • Avery SV (2001) Metal toxicity in yeasts and the role of oxidative stress. Adv Appl Microbiol 49:111–142

    PubMed  CAS  Google Scholar 

  • Baraym Y, Harmon D, De BB (2009) Systems biology. Attractors and democratic dynamics. Science 323:1016–1017

    Google Scholar 

  • Berna A, Bernier F (1999) Regulation by biotic and abiotic stress of a wheat germin gene encoding oxalate oxidase, a H2O2 producing enzyme. Plant Mol Biol 39:539–549

    PubMed  CAS  Google Scholar 

  • Bonnet M, Camares O, Veisseire P (2000) Effects of zinc and influence of Acremonium lolium on growth parameters, chlorophyll a fluorescence and antioxidant enzyme activities of ryegrass (Lolium perenne L. cv. Apollo). J Exp Bot 346:945–953

    Google Scholar 

  • Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702

    PubMed  CAS  Google Scholar 

  • Burkhead JL, Reynolds KA, Abdel GSE, Cohu CM, Pilon M (2009) Copper homeostasis. New Phytol 182:799–816

    PubMed  CAS  Google Scholar 

  • Cadenas E (1989) Biochemistry of oxygen toxicity. Ann Rev Biochem 58:79–110

    PubMed  CAS  Google Scholar 

  • Chehab EW, Eich E, Braam J (2009) Thigmomorphogenesis: a complex plant response to mechano-stimulation. J Exp Bot 60:43–56

    PubMed  CAS  Google Scholar 

  • Ciurli S (2001) Electronic structure of the nickel ions in the active site of urease. Chemistry (Easton) 2001:99–100

    Google Scholar 

  • Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475–486

    PubMed  CAS  Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanism of tolerance in plants. Biochimie 88:1707–1719

    PubMed  CAS  Google Scholar 

  • Cobbett CS, Goldsborough PB (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    PubMed  CAS  Google Scholar 

  • Curie C, Panaviene Z, Loulergue C, Dellaporta SL, Briat JF, Walker EL (2001) Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake. Nature 409:346–349

    PubMed  CAS  Google Scholar 

  • Dalcorso G, Farinati S, Maistri S, Furini A (2008) How plants cope with cadmium: staking all on metabolism and gene expression. J Integr Plant Biol 50:1268–1280

    PubMed  CAS  Google Scholar 

  • Dayan AD, Paine AJ (2001) Mechanisms of chromium toxicity, carcinogenicity and allergenicity: review of the literature from 1985 to 2000. Hum Exp Toxicol 20:439–51

    PubMed  CAS  Google Scholar 

  • Delhaize E, Hebb DM, Richards KD, Lin JM, Ryan PR, Gardner RC (1999) Cloning and expression of a wheat (Triticum aestivum L.) phosphatidylserine synthase cDNA: overexpression in plants alters the composition of phospholipids. J Biol Chem 274:7082–7088

    PubMed  CAS  Google Scholar 

  • Duff SMG, Moorhead GBG, Lefebvre DD, Plaxton WC (1989) Phosphate starvation inducible “Bypasses” of adenylate and phosphate dependent glycolytic enzymes in Brassica nigra suspension cells. Plant Physiol 90:275–1278

    Google Scholar 

  • Duff SMG, Sarath G, Plaxton WC (1994) The role of acid phosphatase in plant phosphorus metabolism. Plant Physiol 90:791–800

    CAS  Google Scholar 

  • Elefteriou EP, Karataglis S (1989) Ultrastructural and morphological char acteristics of cultivated wheat growing on copper-polluted fields. Bot Acta 102:134–140

    Google Scholar 

  • Ellis JG, Tokuhisa JG, Llewellyn DJ, Bouchez D, Singh K, Dennis ES, Peacock WJ (1993) Does the ocs-element occur as a functional component of the promoters of plant genes? Plant J 4:433–443

    PubMed  CAS  Google Scholar 

  • Epstein E, Bloom AJ (2004) Mineral nutrition of plants: principles and perspectives, 2nd edn. Sinauer Associates, Sunderland

    Google Scholar 

  • Ezaki B, Yamamoto Y, Matsumoto H (1995) Cloning and sequencing of the cDNAs induced by aluminium treatment and Pi starvation in tobacco cultured cells. Plant Physiol 93:11–18

    CAS  Google Scholar 

  • Ezaki B, Koyanagi M, Gardner RC, Matsumoto H (1997) Nucleotide sequence of a cDNA for GDP dissociation inhibitor (GDI) which is induced by aluminum (Al) ion stress in tobacco cell culture (accession no. AF012823) (PGR 97–133). Plant Physiol 115:314

    Google Scholar 

  • Ezaki B, Sivaguru M, Ezaki Y, Matsumoto H, Gardner RC (1999) Acquisition of aluminum tolerance in Saccharomyces cerevisiae by expression of the BCB or NtGDI1 gene derived from plants. FEMS Microbiol Lett 171:81–87

    PubMed  CAS  Google Scholar 

  • Farmer EE, Almeras E, Krishnamurthy V (2003) Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory. Curr Opin Plant Biol 6:372–378

    PubMed  CAS  Google Scholar 

  • Fernandes JC, Henriques FS (1991) Biochemical, physiological, and structural effects of excess copper in plants. Bot Rev 57:246–273

    PubMed  Google Scholar 

  • Flora SJ (2009) Structural, chemical and biological aspects of antioxidants for strategies against metal and metalloid exposure. Oxid Med Cell Longev 2:191–206

    PubMed  Google Scholar 

  • Flora SJS, Saxena G, Mehta A (2007) Reversal of lead-induced neuronal apoptosis by chelation treatment in rats: role of ROS and intracellular Ca2+. J Pharmacol Exp Ther 322:108–16

    PubMed  CAS  Google Scholar 

  • Gallego SM, Benavides MP, Tomaro ML (1996) Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stress. Plant Science 121:151–159

    CAS  Google Scholar 

  • Garcia MA, Andres CN, Perea A, Del VS, Penarrubia L, Puig S (2011) The intracellular Arabidopsis COPT5 transport protein is required for photosynthetic electron transport under severe copper deficiency. Plant J 65:848–860

    Google Scholar 

  • Garnier L, Simon PF, Thuleau P, Agnel JP, Blein JP, Ranjeva R, Montillet JL (2006) Cadmium affects tobacco cells by a series of three waves of reactive oxygen species that contribute to cytotoxicity. Plant Cell Environ 29:1956–1969

    PubMed  CAS  Google Scholar 

  • Gerendás J, Polacco JC, Freyermuth SK, Sattelmacher B (1999) Significance of nickel for plant growth and metabolism. J Plant Nutr Soil Sci 162:241–256

    PubMed  Google Scholar 

  • Gonzalez GM, Azcon AC, Mooney M, Valderas A, MacDiarmid CW, Eide DJ, Ferrol N (2005) Characterization of a Glomus intraradices gene encoding a putative Zn transporter of the cation diffusion facilitator family. Fungal Genet Biol 42:130–140

    Google Scholar 

  • Guerinot ML, Eide D (1999) Zeroing in on zinc uptake in yeast and plants. Curr Opin Plant Biol 2:244–249

    PubMed  CAS  Google Scholar 

  • Gussarson M, Asp H, Adalsteinsson S, Jensen P (1996) Enhancement of Cd effects on growth and nutrient composition of birch (Betula pendula) by buthionine sulphoxinine (BSO). J Exp Bot 47:211–215

    Google Scholar 

  • Hagen G, Uhrhammer N, Guilfoyle TJ (1988) Regulation of expression of an auxin-induced soybean sequence by cadmium. J Biol Chem 263:6442–6446

    PubMed  CAS  Google Scholar 

  • Halliwell B (1996) Antioxidants in human health and disease. Ann Rev Nutr 16:33–50

    CAS  Google Scholar 

  • Hamel F, Breton C, Houde M (1998) Isolation and characterization of wheat aluminum-regulated genes: possible involvement of aluminum as a pathogenesis response elicitor. Planta 205:531–538

    PubMed  CAS  Google Scholar 

  • Hartwig A, Asmuss M, Ehleben I, Herzer U, Kostelac D, Pelzer A, Schwerdtle T, Burkle A (2002) Interference by toxic metal ions with DNA repair processes and cell cycle control: molecular mechanisms. Environ Health Perspect 110:797–799

    PubMed  CAS  Google Scholar 

  • Heather K, Marc RK (2001) Abiotic stress signaling pathways: specificity and cross-talk. Trends Plant Sci 6:1360–1385

    Google Scholar 

  • Horemans N, Raeymaekers T, Van BK, Nowocin A, Blust R, Broos K, Cuypers A, Vangronsveld J, Guisez Y (2007) Dehydroascorbate uptake is impaired in the early response of Arabidopsis plant cell cultures to cadmium. J Exp Bot 58:4307–4317

    PubMed  CAS  Google Scholar 

  • Jonak C, Okresz L, Bogre L, Hirt H (2002) Complexity, cross talk and integration of plant MAP kinase signaling. Curr Opin Plant Biol 5:415–24

    PubMed  CAS  Google Scholar 

  • Jonak C, Nakagami H, Hirt H (2004) Heavy metal stress. Activation of distinct mitogen-activated protein kinase pathways by copper and cadmium. Plant Physiol 136:3276–83

    PubMed  CAS  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nat 444:323–329

    CAS  Google Scholar 

  • Kalia K, Flora SJS (2005) Strategies for safe and effective treatment for chronic arsenic and lead poisoning. J Occup Health 47:1–21

    PubMed  CAS  Google Scholar 

  • Katagiri F, Lam E, Chua NH (1989) Two tobacco DNA-binding proteins with homology to the nuclear factor CREB. Nat 340:727–730

    CAS  Google Scholar 

  • Kim JA, Agrawal GK, Rakwal R, Han KS, Kim KN, Yun CH, Heu S, Park SY, Lee YH, Jwa NS (2003) Molecular cloning and mRNA expression analysis of a novel rice (Oryza sativa L.) MAPK kinase kinase, OsEDR1, an ortholog of Arabidopsis AtEDR1, reveal its role in defense/stress signaling pathways and development. Bioch Biophys Res Commun 300:868–876

    CAS  Google Scholar 

  • Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664

    PubMed  CAS  Google Scholar 

  • Kochian LV (1995) Cellular mechanisms of aluminum toxicity and resistance in plants. Annu Rev Plant Physiol Plant Mol Biol 46:237–260

    CAS  Google Scholar 

  • Kochian LV, Pineros MA, Hoekenga OA (2005) The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant Soil 274:175–195

    CAS  Google Scholar 

  • Kusaba M, Takahashi Y, Nagata T (1996) A multiple-stimuli-responsive as- 1-related element of parA gene confers responsiveness to cadmium but not to copper. Plant Physiol 111:1161–1167

    PubMed  CAS  Google Scholar 

  • Lee YW, Ha MS, Kim YK (2001) Role of reactive oxygen species and glutathione in inorganic mercury-induced injury in human glioma cells. Neurochem Res 26:1187–93

    PubMed  CAS  Google Scholar 

  • Lescure AM, Proudhon D, Pesey H, Ragland M, Theil EC, Briat JF (1991) Ferritin gene transcription is regulated by iron in soybean cell cultures. Proc Natl Acad Sci USA 88:8222–8226

    PubMed  CAS  Google Scholar 

  • Ma JF, Zheng SJ, Hiradate S, Matsumoto H (1997) Detoxifying aluminium with buckwheat. Nature 390:569–570

    Google Scholar 

  • Madlung A, Comai L (2004) The effect of stress on genome regulation and structure. Ann Bot 94:481–95

    PubMed  CAS  Google Scholar 

  • Maksymiec W (1997) Effect of copper on cellular processes in higher plants. Photosynthetica 34:321–342

    CAS  Google Scholar 

  • Maksymiec W (2007) Signaling responses in plants to heavy metal stress. Acta Physiol Plant 29:177–187

    CAS  Google Scholar 

  • Maksymiec W, Russa R, Urbanic S, Baszynski T (1994) Effect of excess Cu on the photosynthetic apparatus of runner bean leaves treated at two different growth stages. Physiol Plant 91:715–721

    CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic, London

    Google Scholar 

  • Michael JB (2009) Cell signaling pathways. Cell signaling biology. Portland Press, London

    Google Scholar 

  • Michel KP, Berry S, Hifney A, Pistorius EK (2003) Adaptation to iron deficiency: a comparison between the cyanobacterium Synechococcus elongatus PCC 7942 wild-type and a DpsA-free mutant. Photosynth Res 75:71–84

    PubMed  CAS  Google Scholar 

  • Mills RF, Francini A, Ferreira PS, Baccarini PJ, Aylett M, Krijger GC, Williams LE (2005) The plant P1B-type ATPase AtHMA4 transports Zn and Cd and plays a role in detoxification of transition metals supplied at elevated levels. FEBS Lett 579:783–791

    PubMed  CAS  Google Scholar 

  • Mishra D, Mehta A, Flora SJS (2008) Reversal of hepatic apoptosis with combined administration of DMSA and its analogues in guinea pigs: role of glutathione and linked enzymes. Chem Res Toxicol 21:400–407

    PubMed  CAS  Google Scholar 

  • Monshausen GB, Gilroy S (2009) Feeling green: Mechanosensing in plants. Trends Cell Biol 19:228–235

    PubMed  Google Scholar 

  • Mulrooney SB, Hausinger RP (2003) Nickel uptake and utilization by microorganisms. FEMS Microbiol Rev 27:239–261

    PubMed  CAS  Google Scholar 

  • Pilon SEA, Hwang S, Mel LC, Zhu Y, Tai JC, Bravo RC, Chen Y, Leustek T, Terry N (1999) Overexpression of ATP sulfurylase in Indian mustard leads to increased selenate uptake, reduction, and tolerance. Plant Physiol 119:123–132

    Google Scholar 

  • Pineros M, Magalhaes J, Carvalho-Alves VM, Kochian LV (2002) The physiology and biophysics of an aluminum tolerance mechanism based on root citrate exudation in maize. Plant Physiol 29:1194–1206

    Google Scholar 

  • Plaxton WC, Carswell MC (1999) Metabolic aspects of the phosphate starvation response in plants. In HR Lerner, ed, Plant Responses to Environmental Stresses: From Phytohormones to Genome Reorganization. Marcel Dekker, New York, pp 349–372

    Google Scholar 

  • Poli G, Leonarduzzi F, Biasi E (2004) Chiarpotto Oxidative stress and cell signaling. Curr Med Chem 11:1163–1182

    PubMed  CAS  Google Scholar 

  • Quartacci MF, Pinzino C, Sgherri CLM, Dalla VF, Navari IF (2000) Growth in excess copper induces changes in the lipid composition and fluidity of PSII-enriched membranes in wheat. Plant Physiol 108:87–93

    CAS  Google Scholar 

  • Quinn JM, Merchant S (1995) Two copper-responsive elements associated with the Chlamydomonas Cyc6 gene function as targets for transcriptional activators. Plant Cell 7:623–638

    PubMed  CAS  Google Scholar 

  • Quinn JM, Barraco P, Eriksson M, Merchant S (2000) Coordinate copper and oxygen-responsive Cyc6 and Cpx1 expression in Chlamydomonas is mediated by the same element. J Biol Chem 275:6080–6089

    PubMed  CAS  Google Scholar 

  • Quinn JM, Kropat J, Merchant S (2003) Copper response element and Crr1-dependent Ni21-responsive promoter for induced, reversible gene expression in Chlamydomonas reinhardtii. Eukaryot Cell 2:995–1002

    PubMed  CAS  Google Scholar 

  • Raghothama KG (1999) Phosphate acquisition. Annu Rev Plant Physiol Mol Biol 50:665–693

    CAS  Google Scholar 

  • Ramesh SA, Choimes S, Schachtman DP (2004) Over-expression of an Arabidopsis zinc transporter in hordeum vulgare increases short-term zinc uptake after zinc deprivation and seed zinc content. Plant Mol Biol 54:373–385

    PubMed  CAS  Google Scholar 

  • Raven JA, Ewans CWE, Korb RE (1999) The role of trace metals in photosynthetic electron transport in O2-evolving organisms. Photosynth Res 60:111–149

    CAS  Google Scholar 

  • Rentel MC, Knight MR (2004) Oxidative stress-induced calcium signaling in Arabidopsis. Plant Physiol 135:1471–1479

    PubMed  CAS  Google Scholar 

  • Richards KD, Schott EJ, Sharma YK, Davis KR, Gardner RC (1998) Aluminum induces oxidative stress genes in Arabidopsis thaliana. Plant Physiol 116:409–418

    PubMed  CAS  Google Scholar 

  • Richardson AE (1994) Soil microorganisms and phosphorus availability. In: Pankhurst CE, Doube BM, Gupta VVSR, Grace PR (eds) Soil biota management in sustainable farming systems. CSIRO, Australia, pp 50–62

    Google Scholar 

  • Roberts DM, Harmon AC (1993) Calcium-modulated proteins: targets of intracellular calcium signals in higher-plants. Annu Rev Plant Physiol Plant Mol Biol 43:375–414

    Google Scholar 

  • Rodriguez SM, Romero PMC, Zabalza A, Corpas FJ, Gomez M, Delrio LA, Sandalio LM (2006) Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots: imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell Environment 29:1532–1544

    Google Scholar 

  • Romero PMC, Corpas FJ, Rodriguez SM, Gomez M, Del RLA, Sandalio LM (2007) Differential expression and regulation of antioxidative enzymes by cadmium in pea plants. J Plant Physiol 164:1346–1357

    Google Scholar 

  • Ruter JM (2005) Effect of nickel applications for the control of mouse ear disorder on river birch. J Environ Hort 23:17–20

    CAS  Google Scholar 

  • Ryan PR, Delhaize E, Randall PJ (1995) Characterisation of Al-stimulated efflux of malate from the apices of Al wheat roots. Planta 196:103–110

    CAS  Google Scholar 

  • Ryan PR, Delhaize E, Jones DL (2001) Function and mechanism of organic anion exudation from plant roots. Annu Rev Plant Physiol 52:527–560

    CAS  Google Scholar 

  • Sandalio LM, Dalurzo HC, Gomez M, Romero MC, Delrio LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52:2115–2126

    PubMed  CAS  Google Scholar 

  • Sanità di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Env Exp Bot 41: 105–130

    PubMed  Google Scholar 

  • Schaaf G, Ludewig U, Erenoglu BE, Mori S, Kitahara T, Von WN (2004) ZmYS1 functions as a proton-coupled symporter for phytosiderophore and nicotianamine-chelated metals. J Biol Chem 279:9091–9096

    PubMed  CAS  Google Scholar 

  • Schaeffer HJ, Weber MJ (1999) Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol Cell Biol 19:2435–2444

    PubMed  CAS  Google Scholar 

  • Schutzendubel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    PubMed  CAS  Google Scholar 

  • Sharma PN, Kumar P, Tewari RK (2004) Early signs of oxidative stress in wheat plants subjected to zinc deficiency. J Plant Nutr 27:449–461

    Google Scholar 

  • Shcolnick S, Keren N (2006) Metal homeostasis in cyanobacteria and chloroplasts: balancing benefits and risks to the photosynthetic appa ratus. Plant Physiol 141:805–810

    PubMed  CAS  Google Scholar 

  • Shimogawara K, Usuda H (1995) Uptake of inorganic phosphate by suspension-cultured tobacco cells: kinetics and regulation by Pi starvation. Plant Cell Physiol 36:341–351

    CAS  Google Scholar 

  • Sichul L, Yu YK, Youngsook L, Gynheung A (2007) Rice P1B-type heavy-metal ATPase, OsHMA9, is a metal efflux protein1. Plant Physio 145:831–842

    Google Scholar 

  • Snowden KC, Richards KD, Gardner RC (1995) Aluminum induced genes: induction by toxic metals, low calcium, and wounding and pattern of expression in root tips. Plant Physiol 107:341–348

    PubMed  CAS  Google Scholar 

  • Sreenivasulu N, Sopory SK, Kavikishor PB (2007) Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. Gene 388:1–13

    PubMed  CAS  Google Scholar 

  • Suzuki N, Koizumi N, Sano H (2002) Screening of cadmium responsive genes in Arabidopsis thaliana. Plant Cell Environ 24:1177–1188

    CAS  Google Scholar 

  • Ticconi CA, Abel S (2004) Short on phosphate: plant surveillance and countermeasures. Trends Plant Sci 9:548–555

    PubMed  CAS  Google Scholar 

  • Tortell PD, Maldonado MT, Granger J, Price NM (1999) Marine bacteria and biogeochemical cycling of iron in the oceans. FEMS Microbiol Ecol 29:1–11

    CAS  Google Scholar 

  • Waldemar M (2007) Signaling responses in plants to heavy metal stress. Acta physio plant 29:177–187

    Google Scholar 

  • Wang C, Zhang SH, Wang PF, Hou J, Zhang WJ, Li W, Lin ZP (2009) The effect of excess Zn on mineral nutrition and antioxidative response in rapeseed seedlings. Chemosphere 75:1468–1476

    PubMed  CAS  Google Scholar 

  • Watanabe M, Henmi K, Ogawa K, Suzuki T (2003) Cadmium dependent generation of reactive oxygen species and mitochondrial DNA breaks in photosynthetic and non- photosynthetic strains of Euglena gracilis. Comp Biochem Physiol Toxicol Pharmacol 134:227–234

    Google Scholar 

  • Widmann C, Gibson S, Jarpe MB, Johnson GL (1999) Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 79:143–180

    PubMed  CAS  Google Scholar 

  • Williams LE, Pittman JK, Hall JL (2000) Emerging mechanisms for heavy metal transport in plants. Biochim Biophys Acta 1465:104–126

    PubMed  CAS  Google Scholar 

  • Wintz H, Fox T, Wu YY, Feng V, Chen WQ, Chang HS, Zhu T, Vulpe C (2003) Expression profiles of Arabidopsis thaliana in mineral deficiencies reveal novel transporters involved in metal homeostasis. J Biol Chem 278:47644–47653

    PubMed  CAS  Google Scholar 

  • Wood, BW, Reilly CC, Nyczepir AP (2006). Field deficiency of nickel in trees: Symptoms and causes Proc. VInt. Symp. Mineral Nutr. Decid. Fruit Crops, 16–21 Jan. 2005, Talca, Chile. Acta Horticulturae.

    Google Scholar 

  • Wood BW, Reilly CC, Nyczepir AP (2004) Mouse-ear of pecan: I. Symptomology and occurrence. Hort Science 38:87–94

    Google Scholar 

  • Xiang C, Oliver DJ (1998) Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell 10:1539–1550

    PubMed  CAS  Google Scholar 

  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South Afric J Bot 76:167–179

    CAS  Google Scholar 

  • Yalpani N, Enyedi AJ, Leon J, Raskin I (1994) Ultraviolet light and ozone stimulate accumulation of salicylic acid and pathogenesis related protein and virus resistance in tobacco. Planta 193:373–376

    Google Scholar 

  • Yamamoto Y, Hachiya A, Matsumoto H (1997) Oxidative damage to membranes by a combination of aluminum and iron in suspension-cultured tobacco cells. Plant Cell Physiol 38:1333–1339

    CAS  Google Scholar 

  • Yang T, Poovaiah BW (2003) Calcium/calmodulin-mediated signal network in plants. Trends Plant Sci 8:505–512

    PubMed  CAS  Google Scholar 

  • Yang ZM, Nian H, Sivaguru M, Tanakamaru S, Matsumoto H (2001) Characterization of aluminium-induced citrate secretion in aluminium-tolerant soybean (Glycine max) plants. Physiol Plant 113:64–71

    CAS  Google Scholar 

  • Yew FT, Nicholas O, Nicolas L, Harvey M (2010) Divalent metal ions in plant mitochondria and their role in interactions with proteins and oxidative stress-induced damage to respiratory function. Plant Physiol 152:747–761

    Google Scholar 

  • Yruela I, Gatzen G, Picorel R, Holzwarth AR (1996) Cu (II)-inhibitory effect on photosystem II from higher plants: a picosecond time-resolved fluorescence study. Biochemistry 35:9469–9474

    PubMed  CAS  Google Scholar 

  • Zenk MH (1996) Heavy metal detoxification in higher plants: a review. Gene 179:21–30

    PubMed  CAS  Google Scholar 

  • Zhang Y, Chai TY, Dong J, Zhao W, An CC, Chen ZL, Burkard G (2001) Cloning and expression analysis of the heavy-metal responsive gene PvSR2 from bean. Plant Sci 161:783–790

    CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by National Natural Science Foundation of China (31272237, 30971859) and The International Plant Nutrition Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianyong Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this chapter

Cite this chapter

Shamsi, I.H. et al. (2013). Plant Cell Signaling in Metal Stress. In: Sarwat, M., Ahmad, A., Abdin, M. (eds) Stress Signaling in Plants: Genomics and Proteomics Perspective, Volume 1. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6372-6_9

Download citation

Publish with us

Policies and ethics