Skip to main content

Cocaine as a Neurotoxin

  • Reference work entry
  • First Online:
Book cover Handbook of Neurotoxicity

Abstract

Cocaine is a widely abused psychostimulant drug, with sympathomimetic properties and intense euphoric effects. Cocaine and some of its toxic metabolites cross the blood–brain barrier and induce neurologic impairments, affecting primarily the prefrontal cortex and basal ganglia. In this review, we discuss the mechanisms involved in brain dysfunction induced by cocaine, focusing on pre- and postsynaptic changes in dopaminergic and glutamatergic neurotransmission, oxidative stress, and mitochondrial dysfunction. Neurotoxic effects of combinations of cocaine with other drugs are also discussed. In summary, cocaine neurotoxicity may underlie brain dysfunction in cocaine and polydrug abusers and may predispose the brain to neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ca2+ i :

Intracellular Ca2+ concentration

DAT:

Dopamine transporter

DAQ:

Dopamine quinone

DARPP32:

Dopamine- and cAMP-regulated neuronal phosphoprotein

DOPAC:

3,4-dihydroxyphenylacetic acid

DOPAL:

3,4-dihydroxyphenylacetaldehyde

ERK:

Extracellular-signal-regulated kinase

GPx:

Glutathione peroxidase

GSH:

Reduced glutathione

H2O2 :

Hydrogen peroxide

MAO:

Monoamine oxidase

MAPKK/MEK:

Mitogen-activated protein kinase kinase/extracellular signal-regulated kinase kinase

MDA:

Malondialdehyde

NMDA:

N-methyl-d-aspartate

O2 •− :

Superoxide anion

OH:

Hydroxyl radical

PARP:

Poly (ADP-ribose) polymerase

PD:

Parkinson’s disease

PKA:

Protein kinase A

PP1:

Protein phosphatase 1

Ras-GRF-1:

Ras protein-specific guanine nucleotide-releasing factor 1

SOD:

Superoxide dismutase

VMAT:

Vesicular monoamine transporter

References

  • Alvaro-Bartolome, M., La, H. R., Callado, L. F., Meana, J. J., & Garcia-Sevilla, J. A. (2011). Molecular adaptations of apoptotic pathways and signaling partners in the cerebral cortex of human cocaine addicts and cocaine-treated rats. Neuroscience, 196, 1–15.

    Article  CAS  PubMed  Google Scholar 

  • Bandettini Di Poggio, A., Fornai, F., Paparelli, A., Pacini, M., Perugi, G., & Maremmani, I. (2006). Comparison between heroin and heroin-cocaine polyabusers: A psychopathological study. Annals of the New York Academy of Sciences, 1074, 438–445.

    Article  PubMed  Google Scholar 

  • Bartzokis, G., Beckson, M., & Ling, W. (1996). Clinical and MRI evaluation of psychostimulant neurotoxicity. NIDA Research Monograph, 163, 300–317.

    CAS  PubMed  Google Scholar 

  • Bartzokis, G., Beckson, M., Wirshing, D. A., Lu, P. H., Foster, J. A., & Mintz, J. (1999). Choreoathetoid movements in cocaine dependence. Biological Psychiatry, 45, 1630–1635.

    Article  CAS  PubMed  Google Scholar 

  • Bashkatova, V., Meunier, J., Vanin, A., & Maurice, T. (2006). Nitric oxide and oxidative stress in the brain of rats exposed in utero to cocaine. Annals of the New York Academy of Sciences, 1074, 632–642.

    Article  CAS  PubMed  Google Scholar 

  • Bellucci, A., Navarria, L., Falarti, E., Zaltieri, M., Bono, F., Collo, G., Spillantini, M. G., Missale, C., & Spano, P. (2011). Redistribution of DAT/alpha-synuclein complexes visualized by “in situ” proximity ligation assay in transgenic mice modelling early Parkinson’s disease. PLoS One, 6, e27959.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Benedi, J., Arroyo, R., Romero, C., Martin-Aragon, S., & Villar, A. M. (2004). Antioxidant properties and protective effects of a standardized extract of Hypericum perforatum on hydrogen peroxide-induced oxidative damage in PC12 cells. Life Sciences, 75, 1263–1276.

    Article  CAS  PubMed  Google Scholar 

  • Bolla, K. I., Cadet, J. L., & London, E. D. (1998). The neuropsychiatry of chronic cocaine abuse. The Journal of Neuropsychiatry and Clinical Neurosciences, 10, 280–289.

    CAS  PubMed  Google Scholar 

  • Bolla, K. I., Funderburk, F. R., & Cadet, J. L. (2000). Differential effects of cocaine and cocaine alcohol on neurocognitive performance. Neurology, 54, 2285–2292.

    Article  CAS  PubMed  Google Scholar 

  • Boyer, F., & Dreyer, J. L. (2007). Alpha-synuclein in the nucleus accumbens induces changes in cocaine behaviour in rats. European Journal of Neuroscience, 26, 2764–2776.

    Article  PubMed  Google Scholar 

  • Brami-Cherrier, K., Roze, E., Girault, J. A., Betuing, S., & Caboche, J. (2009). Role of the ERK/MSK1 signalling pathway in chromatin remodelling and brain responses to drugs of abuse. Journal of Neurochemistry, 108, 1323–1335.

    Article  CAS  PubMed  Google Scholar 

  • Brenz Verca, M. S., Bahi, A., Boyer, F., Wagner, G. C., & Dreyer, J. L. (2003). Distribution of alpha- and gamma-synucleins in the adult rat brain and their modification by high-dose cocaine treatment. European Journal of Neuroscience, 18, 1923–1938.

    Article  PubMed  Google Scholar 

  • Brown, J. M., Hanson, G. R., & Fleckenstein, A. E. (2001). Regulation of the vesicular monoamine transporter-2: A novel mechanism for cocaine and other psychostimulants. Journal of Pharmacology and Experimental Therapeutics, 296, 762–767.

    CAS  PubMed  Google Scholar 

  • Buttner, A., Mall, G., Penning, R., Sachs, H., & Weis, S. (2003). The neuropathology of cocaine abuse. Legal Medicine, 5(Suppl 1), S240–S242. Tokyo.

    Article  CAS  PubMed  Google Scholar 

  • Callaghan, R. C., Cunningham, J. K., Sykes, J., & Kish, S. J. (2012). Increased risk of Parkinson’s disease in individuals hospitalized with conditions related to the use of methamphetamine or other amphetamine-type drugs. Drug and Alcohol Dependence, 120, 35–40.

    Article  CAS  PubMed  Google Scholar 

  • Cornish, J. L., Lontos, J. M., Clemens, K. J., & McGregor, I. S. (2005). Cocaine and heroin (‘speedball’) self-administration: The involvement of nucleus accumbens dopamine and mu-opiate, but not delta-opiate receptors. Psychopharmacology, 180, 21–32.

    Article  CAS  PubMed  Google Scholar 

  • Couper, F., & Logan, B. (2004). Drugs and human performance fact sheets. Washington, DC: National Highway Traffic Safety Administration.

    Google Scholar 

  • Cunha-Oliveira, T., Rego, A. C., Cardoso, S. M., Borges, F., Swerdlow, R. H., Macedo, T., & de Oliveira, C. R. (2006a). Mitochondrial dysfunction and caspase activation in rat cortical neurons treated with cocaine or amphetamine. Brain Research, 1089, 44–54.

    Article  CAS  PubMed  Google Scholar 

  • Cunha-Oliveira, T., Rego, A. C., Morgadinho, M. T., Macedo, T., & Oliveira, C. R. (2006b). Differential cytotoxic responses of PC12 cells chronically exposed to psychostimulants or to hydrogen peroxide. Toxicology, 217, 54–62.

    Article  CAS  PubMed  Google Scholar 

  • Cunha-Oliveira, T., Rego, A. C., Garrido, J., Borges, F., Macedo, T., & Oliveira, C. R. (2010). Neurotoxicity of heroin-cocaine combinations in rat cortical neurons. Toxicology, 276, 11–17.

    Article  CAS  PubMed  Google Scholar 

  • Cunha-Oliveira, T., Rego, A. C., & Oliveira, C. R. (2008). Cellular and molecular mechanisms involved in the neurotoxicity of opioid and psychostimulant drugs. Brain Research Reviews, 58, 192–208.

    Article  CAS  PubMed  Google Scholar 

  • Cunha-Oliveira, T., Silva, L., Silva, A. M., Moreno, A. J., Oliveira, C. R., & Santos M. S. (2013). Mitochondrial complex I dysfunction induced by cocaine and cocaine plus morphine in brain and liver mitochondria. Toxicology Letters, 219, 298–306.

    Article  CAS  PubMed  Google Scholar 

  • Devi, B. G., & Chan, A. W. (1997). Impairment of mitochondrial respiration and electron transport chain enzymes during cocaine-induced hepatic injury. Life Sciences, 60, 849–855.

    Article  CAS  PubMed  Google Scholar 

  • Dey, S., Mactutus, C. F., Booze, R. M., & Snow, D. M. (2007). Cocaine exposure in vitro induces apoptosis in fetal locus coeruleus neurons by altering the Bax/Bcl-2 ratio and through caspase-3 apoptotic signaling. Neuroscience, 144, 509–521.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dietrich, J. B., Mangeol, A., Revel, M. O., Burgun, C., Aunis, D., & Zwiller, J. (2005). Acute or repeated cocaine administration generates reactive oxygen species and induces antioxidant enzyme activity in dopaminergic rat brain structures. Neuropharmacology, 48, 965–974.

    Article  CAS  PubMed  Google Scholar 

  • Dietrich, J. B., Poirier, R., Aunis, D., & Zwiller, J. (2004). Cocaine downregulates the expression of the mitochondrial genome in rat brain. Annals of the New York Academy of Sciences, 1025, 345–350.

    Article  CAS  PubMed  Google Scholar 

  • Domingues, A., Cunha, O. T., Laco, M. L., Macedo, T. R., Oliveira, C. R., & Rego, A. C. (2006). Expression of NR1/NR2B N-methyl-D-aspartate receptors enhances heroin toxicity in HEK293 cells. Annals of the New York Academy of Sciences, 1074, 458–465.

    Article  CAS  PubMed  Google Scholar 

  • European Monitoring Center for Drugs and Drug Addiction (2008) Annual Report 2008. The state of the drugs problem in Europe.

    Google Scholar 

  • European Monitoring Center for Drugs and Drug Addiction (2009) Polydrug use: Patterns and responses.

    Google Scholar 

  • Fornai, F., Giorgi, F. S., Bassi, L., Ferrucci, M., Alessandri, M. G., & Corsini, G. U. (2000). Modulation of dihydroxyphenylacetaldehyde extracellular levels in vivo in the rat striatum after different kinds of pharmacological treatment. Brain Research, 861, 126–134.

    Article  CAS  PubMed  Google Scholar 

  • Garcia, R. C., Dati, L. M., Fukuda, S., Torres, L. H., Moura, S., de Carvalho, N. D., Carrettiero, D. C., Camarini, R., Levada-Pires, A. C., Yonamine, M., Negrini-Neto, O., Abdalla, F. M., Sandoval, M. R., Afeche, S. C., & Marcourakis, T. (2012). Neurotoxicity of anhydroecgonine methyl ester, a crack cocaine pyrolysis product. Toxicological Sciences, 128, 223–234.

    Article  CAS  PubMed  Google Scholar 

  • Garrido, J. M., Marques, M. P., Silva, A. M., Macedo, T. R., Oliveira-Brett, A. M., & Borges, F. (2007). Spectroscopic and electrochemical studies of cocaine-opioid interactions. Analytical and Bioanalytical Chemistry, 388, 1799–1808.

    Article  CAS  PubMed  Google Scholar 

  • Graham, D. G., Tiffany, S. M., Bell, W. R., Jr., & Gutknecht, W. F. (1978). Autoxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine, 6-hydroxydopamine, and related compounds toward C1300 neuroblastoma cells in vitro. Molecular Pharmacology, 14, 644–653.

    CAS  PubMed  Google Scholar 

  • Han, D. D., & Gu, H. H. (2006). Comparison of the monoamine transporters from human and mouse in their sensitivities to psychostimulant drugs. BMC Pharmacology, 6, 6.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hastings, T. G. (2009). The role of dopamine oxidation in mitochondrial dysfunction: Implications for Parkinson’s disease. Journal of Bioenergetics and Biomembranes, 41, 469–472.

    Article  CAS  PubMed  Google Scholar 

  • Hastings, T. G., Lewis, D. A., & Zigmond, M. J. (1996). Role of oxidation in the neurotoxic effects of intrastriatal dopamine injections. Proceedings of the National Academy of Science United States of America, 93, 1956–1961.

    Article  CAS  Google Scholar 

  • Heard, K., Palmer, R., & Zahniser, N. R. (2008). Mechanisms of acute cocaine toxicity. Open Pharmacology Journal, 2, 70–78.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hemby, S. E., Co, C., Dworkin, S. I., & Smith, J. E. (1999). Synergistic elevations in nucleus accumbens extracellular dopamine concentrations during self-administration of cocaine/heroin combinations (Speedball) in rats. Journal of Pharmacology and Experimental Therapeutics, 288, 274–280.

    CAS  PubMed  Google Scholar 

  • Henry, J. (2007). Cocaine powder trail. The Biochemist, 29, 16–19.

    CAS  Google Scholar 

  • Huber, J. D., Darling, S. F., Park, K. K., & Soliman, K. F. (2001). The role of NMDA receptors in neonatal cocaine-induced neurotoxicity. Pharmacology Biochemistry and Behavior, 69, 451–459.

    Article  CAS  Google Scholar 

  • Hyman, S. E., Malenka, R. C., & Nestler, E. J. (2006). Neural mechanisms of addiction: The role of reward-related learning and memory. Annual Review of Neuroscience, 29, 565–598.

    Article  CAS  PubMed  Google Scholar 

  • International Programme on Chemical Safety. (1999). Poisons information [Monograph]: Cocaine (PIM 139).

    Google Scholar 

  • Jang, J. H., & Surh, Y. J. (2004). Possible role of NF-kappaB in Bcl-X(L) protection against hydrogen peroxide-induced PC12 cell death. Redox Report, 9, 343–348.

    Article  CAS  PubMed  Google Scholar 

  • Karch, S. B. (2009). Karch’s pathology of drug abuse. Boca Raton: CRC Press.

    Google Scholar 

  • Koppel, B. S., Samkoff, L., & Daras, M. (1996). Relation of cocaine use to seizures and epilepsy. Epilepsia, 37, 875–878.

    Article  CAS  PubMed  Google Scholar 

  • Kovacic, P. (2005). Role of oxidative metabolites of cocaine in toxicity and addiction: Oxidative stress and electron transfer. Medical Hypotheses, 64, 350–356.

    Article  CAS  PubMed  Google Scholar 

  • Langendorf, F. G., Anderson, D. C., Tupper, D. E., Rottenberg, D. A., & Weisman, I. D. (1996). Brain atrophy and chronic cocaine abuse: Background and work in progress. NIDA Research Monograph, 163, 27–42.

    CAS  PubMed  Google Scholar 

  • Lehrmann, E., Oyler, J., Vawter, M. P., Hyde, T. M., Kolachana, B., Kleinman, J. E., Huestis, M. A., Becker, K. G., & Freed, W. J. (2003). Transcriptional profiling in the human prefrontal cortex: Evidence for two activational states associated with cocaine abuse. The Pharmacogenomics Journal, 3, 27–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lepsch, L. B., Munhoz, C. D., Kawamoto, E. M., Yshii, L. M., Lima, L. S., Curi-Boaventura, M. F., Salgado, T. M., Curi, R., Planeta, C. S., & Scavone, C. (2009). Cocaine induces cell death and activates the transcription nuclear factor kappa-b in pc12 cells. Molecular Brain, 2, 3.

    Article  PubMed Central  PubMed  Google Scholar 

  • Leri, F., Bruneau, J., & Stewart, J. (2003). Understanding polydrug use: Review of heroin and cocaine co-use. Addiction, 98, 7–22.

    Article  PubMed  Google Scholar 

  • Lipton, J. W., Gyawali, S., Borys, E. D., Koprich, J. B., Ptaszny, M., & McGuire, S. O. (2003). Prenatal cocaine administration increases glutathione and alpha-tocopherol oxidation in fetal rat brain. Brain Research. Developmental Brain Research, 147, 77–84.

    Article  CAS  PubMed  Google Scholar 

  • Liu, X. Y., Chu, X. P., Mao, L. M., Wang, M., Lan, H. X., Li, M. H., Zhang, G. C., Parelkar, N. K., Fibuch, E. E., Haines, M., Neve, K. A., Liu, F., Xiong, Z. G., & Wang, J. Q. (2006). Modulation of D2R-NR2B interactions in response to cocaine. Neuron, 52, 897–909.

    Article  CAS  PubMed  Google Scholar 

  • Macedo, D. S., de Vasconcelos, S. M., dos Santos, R. S., Aguiar, L. M., Lima, V. T., Viana, G. S., & de Sousa, F. C. (2005). Cocaine alters catalase activity in prefrontal cortex and striatum of mice. Neuroscience Letters, 387, 53–56.

    Article  CAS  PubMed  Google Scholar 

  • Majewska, M. D. (1996). Cocaine addiction as a neurological disorder: Implications for treatment. NIDA Research Monograph, 163, 1–26.

    CAS  PubMed  Google Scholar 

  • Marchitti, S. A., Deitrich, R. A., & Vasiliou, V. (2007). Neurotoxicity and metabolism of the catecholamine-derived 3,4-dihydroxyphenylacetaldehyde and 3,4-dihydroxyphenylglycolaldehyde: The role of aldehyde dehydrogenase. Pharmacological Reviews, 59, 125–150.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mash, D. C., Adi, N., Duque, L., Pablo, J., Kumar, M., & Ervin, F. R. (2008). Alpha synuclein protein levels are increased in serum from recently abstinent cocaine abusers. Drug and Alcohol Dependence, 94, 246–250.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mash, D. C., Ouyang, Q., Pablo, J., Basile, M., Izenwasser, S., Lieberman, A., & Perrin, R. J. (2003). Cocaine abusers have an overexpression of alpha-synuclein in dopamine neurons. Journal of Neuroscience, 23, 2564–2571.

    CAS  PubMed  Google Scholar 

  • McLaughlin, B. A., Nelson, D., Erecinska, M., & Chesselet, M. F. (1998). Toxicity of dopamine to striatal neurons in vitro and potentiation of cell death by a mitochondrial inhibitor. Journal of Neurochemistry, 70, 2406–2415.

    Article  CAS  PubMed  Google Scholar 

  • Missale, C., Fiorentini, C., Busi, C., Collo, G., & Spano, P. F. (2006). The NMDA/D1 receptor complex as a new target in drug development. Current Topics in Medicinal Chemistry, 6, 801–808.

    Article  CAS  PubMed  Google Scholar 

  • Muriach, M., Lopez-Pedrajas, R., Barcia, J. M., Sanchez-Villarejo, M. V., Almansa, I., & Romero, F. J. (2010). Cocaine causes memory and learning impairments in rats: Involvement of nuclear factor kappa B and oxidative stress, and prevention by topiramate. Journal of Neurochemistry, 114, 675–684.

    Article  CAS  PubMed  Google Scholar 

  • Nakano, T., Doi, T., Yoshimoto, J., & Doya, K. (2010). A kinetic model of dopamine- and calcium-dependent striatal synaptic plasticity. PLoS Computational Biology, 6, e1000670.

    Article  PubMed Central  PubMed  Google Scholar 

  • Nassogne, M. C., Louahed, J., Evrard, P., & Courtoy, P. J. (1997). Cocaine induces apoptosis in cortical neurons of fetal mice. Journal of Neurochemistry, 68, 2442–2450.

    Article  CAS  PubMed  Google Scholar 

  • Numa, R., Kohen, R., Poltyrev, T., & Yaka, R. (2008). Tempol diminishes cocaine-induced oxidative damage and attenuates the development and expression of behavioral sensitization. Neuroscience, 155, 649–658.

    Article  CAS  PubMed  Google Scholar 

  • Oliveira, M. T., Rego, A. C., Morgadinho, M. T., Macedo, T. R., & Oliveira, C. R. (2002). Toxic effects of opioid and stimulant drugs on undifferentiated PC12 cells. Annals of the New York Academy of Sciences, 965, 487–496.

    Article  CAS  PubMed  Google Scholar 

  • Olsen, G. D. (1995). Potential mechanisms of cocaine-induced developmental neurotoxicity: A minireview. Neurotoxicology, 16, 159–167.

    CAS  PubMed  Google Scholar 

  • Pascoli, V., Besnard, A., Herve, D., Pages, C., Heck, N., Girault, J. A., Caboche, J., & Vanhoutte, P. (2011). Cyclic adenosine monophosphate-independent tyrosine phosphorylation of NR2B mediates cocaine-induced extracellular signal-regulated kinase activation. Biological Psychiatry, 69, 218–227.

    Article  CAS  PubMed  Google Scholar 

  • Perfeito, R., Cunha-Oliveira, T., & Rego, A. C. (2012). Revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson's disease – resemblance to the effect of amphetamine drugs of abuse. Free Radical Biology Medicine, 53, 1791–806.

    Article  CAS  PubMed  Google Scholar 

  • Pomierny-Chamiolo, L., Moniczewski, A., Wydra, K., Suder, A., & Filip M. (2012). Oxidative stress biomarkers in some rat brain structures and peripheral organs underwent cocaine. Neurotoxicity Research, 23, 92–102.

    Article  PubMed Central  PubMed  Google Scholar 

  • Poon, H. F., Abdullah, L., Mullan, M. A., Mullan, M. J., & Crawford, F. C. (2007). Cocaine-induced oxidative stress precedes cell death in human neuronal progenitor cells. Neurochemistry International, 50, 69–73.

    Article  CAS  PubMed  Google Scholar 

  • Qin, Y., Ouyang, Q., Pablo, J., & Mash, D. C. (2005). Cocaine abuse elevates alpha-synuclein and dopamine transporter levels in the human striatum. Neuroreport, 16, 1489–1493.

    Article  CAS  PubMed  Google Scholar 

  • Ranaldi, R., & Munn, E. (1998). Polydrug self-administration in rats: Cocaine-heroin is more rewarding than cocaine-alone. Neuroreport, 9, 2463–2466.

    Article  CAS  PubMed  Google Scholar 

  • Rego, A. C., & Oliveira, C. R. (2003). Mitochondrial dysfunction and reactive oxygen species in excitotoxicity and apoptosis: Implications for the pathogenesis of neurodegenerative diseases. Neurochemical Research, 28, 1563–1574.

    Article  CAS  PubMed  Google Scholar 

  • Ren, Z., Sun, W. L., Jiao, H., Zhang, D., Kong, H., Wang, X., & Xu, M. (2010). Dopamine D1 and N-methyl-D-aspartate receptors and extracellular signal-regulated kinase mediate neuronal morphological changes induced by repeated cocaine administration. Neuroscience, 168, 48–60.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roussotte, F., Soderberg, L., & Sowell, E. (2010). Structural, metabolic, and functional brain abnormalities as a result of prenatal exposure to drugs of abuse: Evidence from neuroimaging. Neuropsychology Review, 20, 376–397.

    Article  PubMed Central  PubMed  Google Scholar 

  • Rowlett, J. K., & Woolverton, W. L. (1997). Self-administration of cocaine and heroin combinations by rhesus monkeys responding under a progressive-ratio schedule. Psychopharmacology, 133, 363–371.

    Article  CAS  PubMed  Google Scholar 

  • San, L. M., & Saunders-Pullman, R. (2009). Substance abuse and movement disorders. Current Drug Abuse Reviews, 2, 273–278.

    Article  Google Scholar 

  • Scheggi, S., Mangiavacchi, S., Masi, F., Gambarana, C., Tagliamonte, A., & De Montis, M. G. (2002). Dizocilpine infusion has a different effect in the development of morphine and cocaine sensitization: Behavioral and neurochemical aspects. Neuroscience, 109, 267–274.

    Article  CAS  PubMed  Google Scholar 

  • Schilstrom, B., Yaka, R., Argilli, E., Suvarna, N., Schumann, J., Chen, B. T., Carman, M., Singh, V., Mailliard, W. S., Ron, D., & Bonci, A. (2006). Cocaine enhances NMDA receptor-mediated currents in ventral tegmental area cells via dopamine D5 receptor-dependent redistribution of NMDA receptors. Journal of Neuroscience, 26, 8549–8558.

    Article  CAS  PubMed  Google Scholar 

  • Smith, J. E., Co, C., Coller, M. D., Hemby, S. E., & Martin, T. J. (2006). Self-administered heroin and cocaine combinations in the rat: Additive reinforcing effects-supra-additive effects on nucleus accumbens extracellular dopamine. Neuropsychopharmacology, 31, 139–150.

    Article  CAS  PubMed  Google Scholar 

  • Sun, W. L., Zhou, L., Hazim, R., Quinones-Jenab, V., & Jenab, S. (2008). Effects of dopamine and NMDA receptors on cocaine-induced Fos expression in the striatum of Fischer rats. Brain Research, 1243, 1–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Swant, J., Goodwin, J. S., North, A., Ali, A. A., Gamble-George, J., Chirwa, S., & Khoshbouei, H. (2011). Alpha-Synuclein stimulates a dopamine transporter-dependent chloride current and modulates the activity of the transporter. Journal of Biological Chemistry, 286, 43933–43943.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tzschentke, T. M., & Schmidt, W. J. (2003). Glutamatergic mechanisms in addiction. Molecular Psychiatry, 8, 373–382.

    Article  CAS  PubMed  Google Scholar 

  • United Nations Office on Drugs and Crime. (2012). World drug report 2011.

    Google Scholar 

  • Uys, J. D., Knackstedt, L., Hurt, P., Tew, K. D., Manevich, Y., Hutchens, S., Townsend, D. M., & Kalivas, P. W. (2011). Cocaine-induced adaptations in cellular redox balance contributes to enduring behavioral plasticity. Neuropsychopharmacology, 36, 2551–2560.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Uys, J. D., & Reissner, K. J. (2011). Glutamatergic neuroplasticity in cocaine addiction. Progress in Molecular Biology and Translational Science, 98, 367–400.

    Article  CAS  PubMed  Google Scholar 

  • Vergeade, A., Mulder, P., Vendeville-Dehaudt, C., Estour, F., Fortin, D., Ventura-Clapier, R., Thuillez, C., & Monteil, C. (2010). Mitochondrial impairment contributes to cocaine-induced cardiac dysfunction: Prevention by the targeted antioxidant MitoQ. Free Radical Biology & Medicine, 49, 748–756.

    Article  CAS  Google Scholar 

  • Volkow, N. D., Fowler, J. S., & Wang, G. J. (2003). The addicted human brain: Insights from imaging studies. The Journal of Clinical Investigation, 111, 1444–1451.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wickens, J. R., Horvitz, J. C., Costa, R. M., & Killcross, S. (2007). Dopaminergic mechanisms in actions and habits. Journal of Neuroscience, 27, 8181–8183.

    Article  CAS  PubMed  Google Scholar 

  • Williams, J. M., & Steketee, J. D. (2004). Cocaine increases medial prefrontal cortical glutamate overflow in cocaine-sensitized rats: A time course study. European Journal of Neuroscience, 20, 1639–1646.

    Article  PubMed  Google Scholar 

  • Wolf, M. E. (2010). The Bermuda Triangle of cocaine-induced neuroadaptations. Trends in Neurosciences, 33, 391–398.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xiao, D., & Zhang, L. (2008). Upregulation of Bax and Bcl-2 following prenatal cocaine exposure induces apoptosis in fetal rat brain. International Journal of Medical Sciences, 5, 295–302.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamaguchi, M., Suzuki, T., Abe, S., Hori, T., Kurita, H., Asada, T., Okado, N., & Arai, H. (2002). Repeated cocaine administration differentially affects NMDA receptor subunit (NR1, NR2A-C) mRNAs in rat brain. Synapse, 46, 157–169.

    Article  CAS  PubMed  Google Scholar 

  • Youdim, M. B., Edmondson, D., & Tipton, K. F. (2006). The therapeutic potential of monoamine oxidase inhibitors. Nature Reviews Neuroscience, 7, 295–309.

    Article  CAS  PubMed  Google Scholar 

  • Yuan, C., & Acosta, D., Jr. (2000). Effect of cocaine on mitochondrial electron transport chain evaluated in primary cultures of neonatal rat myocardial cells and in isolated mitochondrial preparations. Drug and Chemical Toxicology, 23, 339–348.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors’ lab is funded by project PEst-C/SAU/LA0001/2013-2014 from Fundação para a Ciência e a Tecnologia (FCT), Portugal, co-financed by COMPETE (Programa Operacional Factores de Competitividade), QREN, and European Union (FEDER, Fundo Europeu de Desenvolvimento Regional). T.C.-O. holds a postdoctoral fellowship from FCT reference SFRH/BPD/34711/2007, co-financed by POPH (Programa Operacional Potencial Humano), QREN, and European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Cunha-Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Cunha-Oliveira, T., Rego, A.C., Oliveira, C.R. (2014). Cocaine as a Neurotoxin. In: Kostrzewa, R. (eds) Handbook of Neurotoxicity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5836-4_81

Download citation

Publish with us

Policies and ethics