Skip to main content

Rotenone as Preclinical Model Compound in Parkinson Disease

  • Reference work entry
  • First Online:
Handbook of Neurotoxicity

Abstract

The motor symptoms of Parkinson’s disease (PD) are characterized by a combination of bradykinesia, resting tremor, rigidity, and postural instability, which are caused by striatal dopamine depletion resulting from loss of nigral dopamine neurons and dopaminergic projections. At the time of diagnosis, there is already extensive loss of striatal dopamine and nigral dopamine neurons. Patients also commonly experience a host of cognitive, psychiatric, autonomic, sleep, and sensory disturbances that likely result from pathology to regions outside the substantia nigra. These nonmotor abnormalities may occur decades before diagnosis. “Preclinical” PD is the disease before motor symptom severity elicits a PD diagnosis. Currently, there is an emphasis on the creation and characterization of preclinical models to identify early-stage PD features and test early intervention strategies. The rat rotenone model tests the hypothesis that nigral dopamine neurons are selectively sensitive to systemic mitochondrial complex I inhibition. The model replicates selective loss of nigral dopamine neurons and was the first neurotoxicant model to reproduce intracellular α-synuclein accumulation, similar to Lewy bodies. Subsequent investigations have found the model to replicate many additional PD features. In this chapter, the utility of this model to examine preclinical PD endpoints is evaluated. The major emphasis is pathological and functional alterations that are known to occur in the earliest stages of PD or even be predictive of disease development. Finally, specific rotenone administration regimens to produce preclinical PD models are detailed. In summary, available data suggest that the rat rotenone model is an excellent system to examine preclinical PD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

6-OHDA:

6-hydroxydopamine

AD:

Alzheimer’s disease

DNA:

Deoxyribonucleic acid

LBD:

Lewy body dementia

MIBG:

Metaiodobenzylguanidine

MPTP:

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

PD:

Parkinson’s disease

PET:

Positron emission tomography

RBD:

REM behavior disorder

REM:

Rapid eye movement

SPECT:

Single-photon emission computed tomography

References

  • Abbott, R. D., Petrovitch, H., White, L. R., Masaki, K. H., Tanner, C. M., Curb, J. D., & Ross, G. W. (2001). Frequency of bowel movements and the future risk of Parkinson’s disease. Neurology, 57(3), 456–462 (Research Support, U.S. Gov’t, Non-P.H.S., Research Support, U.S. Gov’t, P.H.S.).

    Article  CAS  PubMed  Google Scholar 

  • Abe, T., Isobe, C., Murata, T., Sato, C., & Tohgi, H. (2003). Alteration of 8-hydroxyguanosine concentrations in the cerebrospinal fluid and serum from patients with Parkinson’s disease. Neuroscience Letters, 336(2), 105–108.

    Article  CAS  PubMed  Google Scholar 

  • Adler, C. H. (2005). Nonmotor complications in Parkinson’s disease. Movement Disorders, 20(Suppl 11), S23–S29. doi:10.1002/mds.20460 (Review).

    Article  PubMed  Google Scholar 

  • Alam, Z. I., Jenner, A., Daniel, S. E., Lees, A. J., Cairns, N., Marsden, C. D., & Halliwell, B. (1997). Oxidative DNA damage in the parkinsonian brain: An apparent selective increase in 8-hydroxyguanine levels in substantia nigra. Journal of Neurochemistry, 69(3), 1196–1203.

    Article  CAS  PubMed  Google Scholar 

  • Bernheimer, H., Birkmayer, W., Hornykiewicz, O., Jellinger, K., & Seitelberger, F. (1973). Brain dopamine and the syndromes of parkinson and huntington. Clinical, morphological and neurochemical correlations. Journal of Neurological Sciences, 20(4), 415–455.

    Article  CAS  Google Scholar 

  • Bertler, A., Carlsson, A., & Rosengren, E. (1958). A method for the fluorimetric determination of adrenaline and noradrenaline in tissues. Acta Physiologica Scandinavica, 44(3–4), 273–292.

    Article  CAS  PubMed  Google Scholar 

  • Betarbet, R., Sherer, T. B., MacKenzie, G., Garcia-Osuna, M., Panov, A. V., & Greenamyre, J. T. (2000). Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nature Neuroscience, 3(12), 1301–1306. doi:10.1038/81834 (Research Support, U.S. Gov’t, P.H.S.).

    Article  CAS  PubMed  Google Scholar 

  • Betarbet, R., Canet-Aviles, R. M., Sherer, T. B., Mastroberardino, P. G., McLendon, C., Kim, J. H., Lund, S., Na, H. M., Taylor, G., Bence, N. F., Kopito, R., Seo, B. B., Yagi, T., Yagi, A., Klinefelter, G., Cookson, M. R., & Greenamyre, J. T. (2006). Intersecting pathways to neurodegeneration in Parkinson’s disease: Effects of the pesticide rotenone on dj-1, alpha-synuclein, and the ubiquitin-proteasome system. Neurobiology of Disease, 22(2), 404–420. doi:10.1016/j.nbd.2005.12.003 (Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t).

    Article  CAS  PubMed  Google Scholar 

  • Braak, H., Del Tredici, K., Rub, U., de Vos, R. A., Jansen Steur, E. N., & Braak, E. (2003). Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiology of Aging, 24(2), 197–211 (Research Support, Non-U.S. Gov’t).

    Article  PubMed  Google Scholar 

  • Braak, H., Ghebremedhin, E., Rub, U., Bratzke, H., & Del Tredici, K. (2004). Stages in the development of Parkinson’s disease-related pathology. Cell and Tissue Research, 318(1), 121–134. doi:10.1007/s00441-004-0956-9 (Research Support, Non-U.S. Gov’t Review).

    Article  PubMed  Google Scholar 

  • Braak, H., de Vos, R. A., Bohl, J., & Del Tredici, K. (2006). Gastric alpha-synuclein immunoreactive inclusions in meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology. Neuroscience Letters, 396(1), 67–72. doi:10.1016/j.neulet.2005.11.012 (Research Support, Non-U.S. Gov’t).

    Article  CAS  PubMed  Google Scholar 

  • Cannon, J. R., & Greenamyre, J. T. (2010). Neurotoxic in vivo models of Parkinson’s disease recent advances. Progress in Brain Research, 184, 17–33. doi:10.1016/S0079-6123(10)84002-6 (Review).

    Article  CAS  PubMed  Google Scholar 

  • Cannon, J. R., & Greenamyre, J. T. (2011). The role of environmental exposures in neurodegeneration and neurodegenerative diseases. Toxicological Sciences, 124(2), 225–250. doi:10.1093/toxsci/kfr239 (Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cannon, J. R., & Greenamyre, J. T. (2012). Gene-environment interactions in Parkinson’s disease: Specific evidence in humans and mammalian models. Neurobiology of Disease. doi:10.1016/j.nbd.2012.06.025.

    PubMed  Google Scholar 

  • Cannon, J. R., Tapias, V., Na, H. M., Honick, A. S., Drolet, R. E., & Greenamyre, J. T. (2009). A highly reproducible rotenone model of Parkinson’s disease. Neurobiology of Disease, 34(2), 279–290 (Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cannon, J. R., Geghman, K. D., Tapias, V., Sew, T., Dail, M. K., Li, C., & Greenamyre, J. T. (2013). Expression of human e46k-mutated alpha-synuclein in bac-transgenic rats replicates early-stage Parkinson’s disease features and enhances vulnerability to mitochondrial impairment. Exp Neurol, 240, 44–56. doi: 10.1016/j.expneurol.2012.11.007.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Carlsson, A., Lindqvist, M., Magnusson, T., & Waldeck, B. (1958). On the presence of 3-hydroxytyramine in brain. Science, 127(3296), 471.

    Article  CAS  PubMed  Google Scholar 

  • Chaudhuri, K. R., Healy, D. G., & Schapira, A. H. (2006). Non-motor symptoms of Parkinson’s disease: Diagnosis and management. Lancet Neurology, 5(3), 235–245. doi:10.1016/S1474-4422(06)70373-8 (Review).

    Article  PubMed  Google Scholar 

  • Chaves, R. S., Melo, T. Q., Martins, S. A., & Ferrari, M. F. (2010). Protein aggregation containing beta-amyloid, alpha-synuclein and hyperphosphorylated tau in cultured cells of hippocampus, substantia nigra and locus coeruleus after rotenone exposure. BMC Neuroscience, 11, 144. doi:10.1186/1471-2202-11-144 (Research Support, Non-U.S. Gov’t).

    Article  PubMed Central  PubMed  Google Scholar 

  • Collier, T. J., Kanaan, N. M., & Kordower, J. H. (2011). Ageing as a primary risk factor for Parkinson’s disease: Evidence from studies of non-human primates. Nature Reviews Neuroscience, 12(6), 359–366. doi:10.1038/nrn3039.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dexter, D. T., Carter, C. J., Wells, F. R., Javoy-Agid, F., Agid, Y., Lees, A., Jenner, P., & Marsden, C. D. (1989). Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease. Journal of Neurochemistry, 52(2), 381–389.

    Article  CAS  PubMed  Google Scholar 

  • Dorsey, E. R., Constantinescu, R., Thompson, J. P., Biglan, K. M., Holloway, R. G., Marshall, F. J., Ravina, B. M., Schifitto, G., Siderowf, A., & Tanner, C. M. (2007). Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology, 68(5), 384–386. doi:10.1212/01.wnl.0000247740.47667.03 (Meta-Analysis).

    Article  CAS  PubMed  Google Scholar 

  • Drolet, R. E., Cannon, J. R., Montero, L., & Greenamyre, J. T. (2009). Chronic rotenone exposure reproduces Parkinson’s disease gastrointestinal neuropathology. Neurobiology of Disease, 36(1), 96–102. doi:10.1016/j.nbd.2009.06.017 (Research Support, Non-U.S. Gov’t).

    Article  CAS  PubMed  Google Scholar 

  • Emre, M. (2004). Dementia in Parkinson’s disease: Cause and treatment. Current Opinion in Neurology, 17(4), 399–404 (Review).

    Article  PubMed  Google Scholar 

  • Ferrante, R. J., Schulz, J. B., Kowall, N. W., & Beal, M. F. (1997). Systemic administration of rotenone produces selective damage in the striatum and globus pallidus, but not in the substantia nigra. Brain Research, 753(1), 157–162 (Comparative Study Research Support, Non-U.S. Gov’t, Research Support, U.S. Gov’t, Non-P.H.S., Research Support, U.S. Gov’t, P.H.S.).

    Article  CAS  PubMed  Google Scholar 

  • Floor, E., & Wetzel, M. G. (1998). Increased protein oxidation in human substantia nigra pars compacta in comparison with basal ganglia and prefrontal cortex measured with an improved dinitrophenylhydrazine assay. Journal of Neurochemistry, 70(1), 268–275.

    Article  CAS  PubMed  Google Scholar 

  • Forno, L. S. (1996). Neuropathology of Parkinson’s disease. Journal of Neuropathology and Experimental Neurology, 55(3), 259–272 (Review).

    Article  CAS  PubMed  Google Scholar 

  • Forte, G., Bocca, B., Senofonte, O., Petrucci, F., Brusa, L., Stanzione, P., Zannino, S., Violante, N., Alimonti, A., & Sancesario, G. (2004). Trace and major elements in whole blood, serum, cerebrospinal fluid and urine of patients with Parkinson’s disease. Journal of Neural Transmission, 111(8), 1031–1040.

    Article  CAS  PubMed  Google Scholar 

  • Gagnon, J. F., Bedard, M. A., Fantini, M. L., Petit, D., Panisset, M., Rompre, S., Carrier, J., & Montplaisir, J. (2002). Rem sleep behavior disorder and rem sleep without atonia in Parkinson’s disease. Neurology, 59(4), 585–589 (Clinical Trial Controlled Clinical TrialResearch Support, Non-U.S. Gov’t).

    Article  CAS  PubMed  Google Scholar 

  • Gagnon, J. F., Postuma, R. B., Mazza, S., Doyon, J., & Montplaisir, J. (2006). Rapid-eye-movement sleep behaviour disorder and neurodegenerative diseases. Lancet Neurology, 5(5), 424–432. doi:10.1016/S1474-4422(06)70441-0 (Research Support, Non-U.S. Gov’t Review).

    Article  PubMed  Google Scholar 

  • Garcia-Garcia, F., Ponce, S., Brown, R., Cussen, V., & Krueger, J. M. (2005). Sleep disturbances in the rotenone animal model of Parkinson disease. Brain Research, 1042(2), 160–168. doi:10.1016/j.brainres.2005.02.036 (Comparative Study Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, P.H.S.).

    Article  CAS  PubMed  Google Scholar 

  • Gatto, E. M., Carreras, M. C., Pargament, G. A., Riobo, N. A., Reides, C., Pardal, M. M. F., Llesuy, S., & Poderoso, J. J. (1996). Neutrophil function, nitric oxide, and blood oxidative stress in Parkinson’s disease. Movement Disorders, 11(3), 261–267. doi:10.1002/mds.870110308 (Research Support, Non-U.S. Gov’t).

    Article  CAS  PubMed  Google Scholar 

  • Goldstein, D. S. (2011). Stress, allostatic load, catecholamines, and other neurotransmitters in neurodegenerative diseases. Endocrine Regulations, 45(2), 91–98 (Research Support, N.I.H., Intramural Review).

    Article  CAS  PubMed  Google Scholar 

  • Goldstein, D. S., Sharabi, Y., Karp, B. I., Bentho, O., Saleem, A., Pacak, K., & Eisenhofer, G. (2007). Cardiac sympathetic denervation preceding motor signs in Parkinson disease. Clinical Autonomic Research, 17(2), 118–121. doi:10.1007/s10286-007-0396-1 (Case Reports Research Support, N.I.H., Intramural).

    Article  PubMed  Google Scholar 

  • Gotz, M. E., Gerstner, A., Harth, R., Dirr, A., Janetzky, B., Kuhn, W., Riederer, P., & Gerlach, M. (2000). Altered redox state of platelet coenzyme q10 in Parkinson’s disease. Journal of Neural Transmission, 107(1), 41–48 (Research Support, Non-U.S. Gov’t).

    Article  CAS  PubMed  Google Scholar 

  • Greene, J. G., Noorian, A. R., & Srinivasan, S. (2009). Delayed gastric emptying and enteric nervous system dysfunction in the rotenone model of Parkinson’s disease. Experimental Neurology, 218(1), 154–161. doi:10.1016/j.expneurol.2009.04.023 (Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hawkes, C. (2003). Olfaction in neurodegenerative disorder. Movement Disorders, 18(4), 364–372. doi:10.1002/mds.10379 (Review).

    Article  PubMed  Google Scholar 

  • Heikkila, R. E., Nicklas, W. J., Vyas, I., & Duvoisin, R. C. (1985). Dopaminergic toxicity of rotenone and the 1-methyl-4-phenylpyridinium ion after their stereotaxic administration to rats: Implication for the mechanism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity. Neuroscience Letters, 62(3), 389–394 (Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.).

    Article  CAS  PubMed  Google Scholar 

  • Hilker, R., Schweitzer, K., Coburger, S., Ghaemi, M., Weisenbach, S., Jacobs, A. H., & Heiss, W. D. (2005). Nonlinear progression of Parkinson disease as determined by serial positron emission tomographic imaging of striatal fluorodopa f 18 activity. Archives of Neurology, 62(3), 378–382. doi:10.1001/archneur.62.3.378 (Comparative Study).

    Article  PubMed  Google Scholar 

  • Horowitz, M. P., Milanese, C., Di Maio, R., Hu, X., Montero, L. M., Sanders, L. H., & Mastroberardino, P. G. (2011). Single-cell redox imaging demonstrates a distinctive response of dopaminergic neurons to oxidative insults. Antioxidants & Redox Signaling, 15(4), 855–871. doi:10.1089/ars.2010.3629 (Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t).

    Article  CAS  Google Scholar 

  • Javitch, J. A., D’Amato, R. J., Strittmatter, S. M., & Snyder, S. H. (1985). Parkinsonism-inducing neurotoxin, n-methyl-4-phenyl-1,2,3,6 -tetrahydropyridine: Uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity. Proceedings of the National Academy of Sciences of the United States of America, 82(7), 2173–2177 (In Vitro Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kalra, J., Rajput, A. H., Mantha, S. V., & Prasad, K. (1992). Serum antioxidant enzyme activity in Parkinson’s disease. Molecular and Cellular Biochemistry, 110(2), 165–168.

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi, A., Takeda, A., Onodera, H., Kimpara, T., Hisanaga, K., Sato, N., Nunomura, A., Castellani, R. J., Perry, G., Smith, M. A., & Itoyama, Y. (2002). Systemic increase of oxidative nucleic acid damage in Parkinson’s disease and multiple system atrophy. Neurobiology of Disease, 9(2), 244–248.

    Article  CAS  PubMed  Google Scholar 

  • Kilinc, A., Yalcin, A. S., Yalcin, D., Taga, Y., & Emerk, K. (1988). Increased erythrocyte susceptibility to lipid peroxidation in human Parkinson’s disease. Neuroscience Letters, 87(3), 307–310.

    Article  CAS  PubMed  Google Scholar 

  • Krige, D., Carroll, M. T., Cooper, J. M., Marsden, C. D., & Schapira, A. H. (1992). Platelet mitochondrial function in Parkinson’s disease. The royal kings and queens Parkinson disease research group. Annals of Neurology, 32(6), 782–788.

    Article  CAS  PubMed  Google Scholar 

  • Lebouvier, T., Chaumette, T., Damier, P., Coron, E., Touchefeu, Y., Vrignaud, S., Naveilhan, P., Galmiche, J. P., Bruley des Varannes, S., Derkinderen, P., & Neunlist, M. (2008). Pathological lesions in colonic biopsies during Parkinson’s disease. Gut, 57(12), 1741–1743. doi:10.1136/gut.2008.162503 (Letter).

    Article  CAS  PubMed  Google Scholar 

  • Lin, C. H., Huang, J. Y., Ching, C. H., & Chuang, J. I. (2008). Melatonin reduces the neuronal loss, downregulation of dopamine transporter, and upregulation of d2 receptor in rotenone-induced parkinsonian rats. Journal of Pineal Research, 44(2), 205–213. doi:10.1111/j.1600-079X.2007.00510.x (Research Support, Non-U.S. Gov’t).

    Article  CAS  PubMed  Google Scholar 

  • Mastroberardino, P. G., Hoffman, E. K., Horowitz, M. P., Betarbet, R., Taylor, G., Cheng, D., Na, H. M., Gutekunst, C. A., Gearing, M., Trojanowski, J. Q., Anderson, M., Chu, C. T., Peng, J., & Greenamyre, J. T. (2009). A novel transferrin/tfr2-mediated mitochondrial iron transport system is disrupted in Parkinson’s disease. Neurobiology of Disease, 34(3), 417–431. doi:10.1016/j.nbd.2009.02.009 (Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McDonald, W. M., Richard, I. H., & DeLong, M. R. (2003). Prevalence, etiology, and treatment of depression in Parkinson’s disease. Biological Psychiatry, 54(3), 363–375 (Review).

    Article  PubMed  Google Scholar 

  • Migliore, L., Scarpato, R., Coppede, F., Petrozzi, L., Bonuccelli, U., & Rodilla, V. (2001). Chromosome and oxidative damage biomarkers in lymphocytes of Parkinson’s disease patients. International Journal of Hygiene and Environmental Health, 204(1), 61–66 (Research Support, Non-U.S. Gov’t).

    Article  CAS  PubMed  Google Scholar 

  • Migliore, L., Petrozzi, L., Lucetti, C., Gambaccini, G., Bernardini, S., Scarpato, R., Trippi, F., Barale, R., Frenzilli, G., Rodilla, V., & Bonuccelli, U. (2002). Oxidative damage and cytogenetic analysis in leukocytes of Parkinson’s disease patients. Neurology, 58(12), 1809–1815 (Comparative Study Research Support, Non-U.S. Gov’t).

    Article  CAS  PubMed  Google Scholar 

  • Moore, R. Y., Bhatnagar, R. K., & Heller, A. (1971). Anatomical and chemical studies of a nigro-neostriatal projection in the cat. Brain Research, 30(1), 119–135.

    Article  CAS  PubMed  Google Scholar 

  • Morris, H. R. (2005). Genetics of Parkinson’s disease. Annals of Medicine, 37(2), 86–96 (Review).

    Article  CAS  PubMed  Google Scholar 

  • Morrish, P. K., Rakshi, J. S., Bailey, D. L., Sawle, G. V., & Brooks, D. J. (1998). Measuring the rate of progression and estimating the preclinical period of Parkinson’s disease with [18F]dopa PET. Journal of Neurology, Neurosurgery, and Psychiatry, 64(3), 314–319 (Research Support, Non-U.S. Gov’t).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nicklas, W. J., Vyas, I., & Heikkila, R. E. (1985). Inhibition of nadh-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. Life Sciences, 36(26), 2503–2508 (Research Support, U.S. Gov’t, P.H.S.).

    Article  CAS  PubMed  Google Scholar 

  • Olichney, J. M., Murphy, C., Hofstetter, C. R., Foster, K., Hansen, L. A., Thal, L. J., & Katzman, R. (2005). Anosmia is very common in the Lewy body variant of Alzheimer’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 76(10), 1342–1347. doi:10.1136/jnnp.2003.032003 (Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t, Research Support, U.S. Gov’t, P.H.S.).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pan-Montojo, F., Anichtchik, O., Dening, Y., Knels, L., Pursche, S., Jung, R., Jackson, S., Gille, G., Spillantini, M. G., Reichmann, H., & Funk, R. H. (2010). Progression of Parkinson’s disease pathology is reproduced by intragastric administration of rotenone in mice. PLoS One, 5(1), e8762. doi:10.1371/journal.pone.0008762.

    Article  PubMed Central  PubMed  Google Scholar 

  • Papapetropoulos, S., & Mash, D. C. (2005). Psychotic symptoms in Parkinson’s disease. From description to etiology. Journal of Neurology, 252(7), 753–764. doi:10.1007/s00415-005-0918-5 (Review).

    Article  PubMed  Google Scholar 

  • Parker, W. D., Jr., Boyson, S. J., & Parks, J. K. (1989). Abnormalities of the electron transport chain in idiopathic Parkinson’s disease. Annals of Neurology, 26(6), 719–723. doi:10.1002/ana.410260606 (Research Support, U.S. Gov’t, P.H.S.).

    Article  PubMed  Google Scholar 

  • Petrozzi, L., Lucetti, C., Gambaccini, G., Bernardini, S., Del Dotto, P., Migliore, L., Scarpato, R., & Bonuccelli, U. (2001). Cytogenetic analysis oxidative damage in lymphocytes of Parkinson’s disease patients. Neurological Science, 22(1), 83–84.

    Article  CAS  Google Scholar 

  • Postuma, R. B., Gagnon, J. F., & Montplaisir, J. (2010). Clinical prediction of Parkinson’s disease: Planning for the age of neuroprotection. Journal of Neurology, Neurosurgery, and Psychiatry, 81(9), 1008–1013. doi:10.1136/jnnp.2009.174748 (Research Support, Non-U.S. Gov’t).

    Article  CAS  PubMed  Google Scholar 

  • Przedborski, S., & Vila, M. (2001). MPTP: A review of its mechanisms of neurotoxicity. Clinical Neuroscience Research, 1, 407–418.

    Article  CAS  Google Scholar 

  • Ravanel, P., Tissut, M., & Douce, R. (1984). Effects of rotenoids on isolated plant mitochondria. Plant Physiology, 75(2), 414–420.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ravina, B., Eidelberg, D., Ahlskog, J. E., Albin, R. L., Brooks, D. J., Carbon, M., Dhawan, V., Feigin, A., Fahn, S., Guttman, M., Gwinn-Hardy, K., McFarland, H., Innis, R., Katz, R. G., Kieburtz, K., Kish, S. J., Lange, N., Langston, J. W., Marek, K., Morin, L., Moy, C., Murphy, D., Oertel, W. H., Oliver, G., Palesch, Y., Powers, W., Seibyl, J., Sethi, K. D., Shults, C. W., Sheehy, P., Stoessl, A. J., & Holloway, R. (2005). The role of radiotracer imaging in Parkinson disease. Neurology, 64(2), 208–215. doi:10.1212/01.WNL.0000149403.14458.7F (Research Support, U.S. Gov’t, P.H.S. Review).

    Article  CAS  PubMed  Google Scholar 

  • Rojas, J. C., Simola, N., Kermath, B. A., Kane, J. R., Schallert, T., & Gonzalez-Lima, F. (2009). Striatal neuroprotection with methylene blue. Neuroscience, 163(3), 877–889. doi:10.1016/j.neuroscience.2009.07.012 (Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ross, G. W., Petrovitch, H., Abbott, R. D., Tanner, C. M., Popper, J., Masaki, K., Launer, L., & White, L. R. (2008). Association of olfactory dysfunction with risk for future Parkinson’s disease. Annals of Neurology, 63(2), 167–173. doi:10.1002/ana.21291 (Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.).

    Article  PubMed  Google Scholar 

  • Saggu, H., Cooksey, J., Dexter, D., Wells, F. R., Lees, A., Jenner, P., & Marsden, C. D. (1989). A selective increase in particulate superoxide dismutase activity in parkinsonian substantia nigra. Journal of Neurochemistry, 53(3), 692–697.

    Article  CAS  PubMed  Google Scholar 

  • Savica, R., Carlin, J. M., Grossardt, B. R., Bower, J. H., Ahlskog, J. E., Maraganore, D. M., Bharucha, A. E., & Rocca, W. A. (2009). Medical records documentation of constipation preceding Parkinson disease: A case–control study. Neurology, 73(21), 1752–1758. doi:10.1212/WNL.0b013e3181c34af5 (Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schapira, A. H., Cooper, J. M., Dexter, D., Jenner, P., Clark, J. B., & Marsden, C. D. (1989). Mitochondrial complex i deficiency in Parkinson’s disease. Lancet, 1(8649), 1269 (Letter Research Support, Non-U.S. Gov’t).

    Article  CAS  PubMed  Google Scholar 

  • Schwarting, R. K., & Huston, J. P. (1996). Unilateral 6-hydroxydopamine lesions of meso-striatal dopamine neurons and their physiological sequelae. Progress in Neurobiology, 49(3), 215–266 (Research Support, Non-U.S. Gov’t Review).

    Article  CAS  PubMed  Google Scholar 

  • Sherer, T. B., Betarbet, R., Stout, A. K., Lund, S., Baptista, M., Panov, A. V., Cookson, M. R., & Greenamyre, J. T. (2002). An in vitro model of Parkinson’s disease: Linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage. Journal of Neuroscience, 22(16), 7006–7015. doi:20026721 (Research Support, U.S. Gov’t, P.H.S.).

    CAS  PubMed  Google Scholar 

  • Sherer, T. B., Betarbet, R., Testa, C. M., Seo, B. B., Richardson, J. R., Kim, J. H., Miller, G. W., Yagi, T., Matsuno-Yagi, A., & Greenamyre, J. T. (2003). Mechanism of toxicity in rotenone models of Parkinson’s disease. Journal of Neuroscience, 23(34), 10756–10764 (In Vitro Research Support, Non-U.S. Gov’t, Research Support, U.S. Gov’t, P.H.S.).

    CAS  PubMed  Google Scholar 

  • Sofic, E., Riederer, P., Heinsen, H., Beckmann, H., Reynolds, G. P., Hebenstreit, G., & Youdim, M. B. (1988). Increased iron (iii) and total iron content in post mortem substantia nigra of parkinsonian brain. Journal of Neural Transmission, 74(3), 199–205.

    Article  CAS  PubMed  Google Scholar 

  • Spiegel, J., Hellwig, D., Farmakis, G., Jost, W. H., Samnick, S., Fassbender, K., Kirsch, C. M., & Dillmann, U. (2007). Myocardial sympathetic degeneration correlates with clinical phenotype of Parkinson’s disease. Movement Disorders, 22(7), 1004–1008. doi:10.1002/mds.21499 (Research Support, Non-U.S. Gov’t).

    Article  PubMed  Google Scholar 

  • Spillantini, M. G., Schmidt, M. L., Lee, V. M., Trojanowski, J. Q., Jakes, R., & Goedert, M. (1997). Alpha-synuclein in Lewy bodies. Nature, 388(6645), 839–840. doi:10.1038/42166 (Letter).

    Article  CAS  PubMed  Google Scholar 

  • Tanner, C. M., Kamel, F., Ross, G. W., Hoppin, J. A., Goldman, S. M., Korell, M., Marras, C., Bhudhikanok, G. S., Kasten, M., Chade, A. R., Comyns, K., Richards, M. B., Meng, C., Priestley, B., Fernandez, H. H., Cambi, F., Umbach, D. M., Blair, A., Sandler, D. P., & Langston, J. W. (2011). Rotenone, paraquat, and Parkinson’s disease. Environmental Health Perspectives, 119(6), 866–872. doi:10.1289/ehp.1002839 (Research Support, N.I.H., Extramural Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov’t).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tapias, V., Cannon, J. R., & Greenamyre, J. T. (2010). Melatonin treatment potentiates neurodegeneration in a rat rotenone Parkinson’s disease model. Journal of Neuroscience Research, 88(2), 420–427. doi:10.1002/jnr.22201 (Research Support, Non-U.S. Gov’t).

    Article  CAS  PubMed  Google Scholar 

  • Testa, C. M., Sherer, T. B., Greenamyre, J. T. (2005). Rotenone induces oxidative stress and dopaminergic neuron damage in organotypic substantia nigra cultures [Comparative Study In Vitro Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov’t, Research Support, U.S. Gov’t, P.H.S.]. Brain Res Mol Brain Res, 134(1), 109–118. doi: 10.1016/j.molbrainres.2004.11.007

    Article  CAS  PubMed  Google Scholar 

  • Tillerson, J. L., Caudle, W. M., Parent, J. M., Gong, C., Schallert, T., & Miller, G. W. (2006). Olfactory discrimination deficits in mice lacking the dopamine transporter or the D2 dopamine receptor. Behavioural Brain Research, 172(1), 97–105. doi:10.1016/j.bbr.2006.04.025 (Research Support, N.I.H., Extramural).

    Article  CAS  PubMed  Google Scholar 

  • Vingerhoets, F. J., Snow, B. J., Lee, C. S., Schulzer, M., Mak, E., & Calne, D. B. (1994). Longitudinal fluorodopa positron emission tomographic studies of the evolution of idiopathic parkinsonism. Annals of Neurology, 36(5), 759–764. doi:10.1002/ana.410360512 (Research Support, Non-U.S. Gov’t).

    Article  CAS  PubMed  Google Scholar 

  • Vitte, J., Michel, B. F., Bongrand, P., & Gastaut, J. L. (2004). Oxidative stress level in circulating neutrophils is linked to neurodegenerative diseases. Journal of Clinical Immunology, 24(6), 683–692.

    Article  PubMed  Google Scholar 

  • Wakabayashi, K., Takahashi, H., Takeda, S., Ohama, E., & Ikuta, F. (1988). Parkinson’s disease: The presence of Lewy bodies in Auerbach’s and Meissner’s plexuses. Acta Neuropathologica, 76(3), 217–221.

    Article  CAS  PubMed  Google Scholar 

  • Wakabayashi, K., Takahashi, H., Ohama, E., & Ikuta, F. (1990). Parkinson’s disease: An immunohistochemical study of lewy body-containing neurons in the enteric nervous system. Acta Neuropathologica, 79(6), 581–583 (Research Support, Non-U.S. Gov’t).

    Article  CAS  PubMed  Google Scholar 

  • Yi, P. L., Tsai, C. H., Lu, M. K., Liu, H. J., Chen, Y. C., & Chang, F. C. (2007). Interleukin-1beta mediates sleep alteration in rats with rotenone-induced parkinsonism. Sleep, 30(4), 413–425 (Research Support, Non-U.S. Gov’t).

    PubMed  Google Scholar 

  • Yoshino, H., Nakagawa-Hattori, Y., Kondo, T., & Mizuno, Y. (1992). Mitochondrial complex I and II activities of lymphocytes and platelets in Parkinson’s disease. Journal of Neural Transmission. Parkinson’s Disease and Dementia Section, 4(1), 27–34.

    Article  CAS  PubMed  Google Scholar 

  • Younes-Mhenni, S., Frih-Ayed, M., Kerkeni, A., Bost, M., & Chazot, G. (2007). Peripheral blood markers of oxidative stress in Parkinson’s disease. European Neurology, 58(2), 78–83. doi:10.1159/000103641.

    CAS  PubMed  Google Scholar 

  • Yu, J. G., Wu, J., Shen, F. M., Cai, G. J., Liu, J. G., & Su, D. F. (2008). Arterial b aroreflex dysfunction fails to mimic Parkinson’s disease in rats. Journal of Pharmacological Sciences, 108(1), 56–62 (Research Support, Non-U.S. Gov’t).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by funding to J. R. C. (NIH: ES19879; The Michael J. Fox Foundation) and to J. T. G. (NIH: NS059806-01 and ES020718; The Michael J. Fox Foundation; The American Parkinson Disease Association).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason R. Cannon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Cannon, J.R., Greenamyre, J.T. (2014). Rotenone as Preclinical Model Compound in Parkinson Disease. In: Kostrzewa, R. (eds) Handbook of Neurotoxicity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5836-4_8

Download citation

Publish with us

Policies and ethics