Skip to main content

Regulation of DA Homeostasis and Role of VMAT2 in DA-Induced Neurodegeneration

  • Reference work entry
  • First Online:

Abstract

Metabolic turnover of dopamine (DA) and other monoamines is tightly regulated by their synthesis, degradation, and compartmentalization. DA transmission plays important roles in learning and behavior, while abnormal DA tone is implicated in multiple neurological disorders, including Parkinson’s disease (PD), schizophrenia, and psychoses. Free cytosolic DA can produce oxidative stress and protein damage and is suspected to contribute to the development of PD. Vesicular monoamine transporter 2 (VMAT2) sequesters DA into synaptic vesicles, thereby occupying a unique position where it facilitates DA synaptic transmission while preventing the deleterious effects of DA presence in the cytosol. This review summarizes recent findings on the regulation of DA cellular homeostasis and on the relationship between VMAT2 activity and DA-mediated neurotoxicity.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AADC:

Aromatic l-amino acid decarboxylase

DA:

Dopamine

DAcyt :

Cytosolic DA concentration

DAT:

DA uptake transporter

DOPAC:

3,4-dihydroxyphenylacetate

DOPAL:

3,4-dihydroxyphenylacetaldehyde

LC:

Locus coeruleus

L-DOPA:

l-3,4-dihydroxyphenylalanine, levodopa

MAO:

Monoamine oxidase

METH:

Methamphetamine

MPP+ :

1-methyl-4-phenylpyridinium

MSN:

Medium spiny neurons

PD:

Parkinson’s disease

SNpc:

Substantia nigra pars compacta

ROS:

Reactive oxygen species

TH:

Tyrosine hydroxylase

VGLUT2:

Vesicular glutamate transporter 2

VTA:

Ventral tegmental area

VMAT:

Vesicular monoamine transporter

References

  • Albillos, A., Dernick, G., Hostmann, H., Almers, W., Alvarez de Toledo, G., & Lindau, M. (1997). The exocytotic event in chromaffin cells revealed by patch amperometry. Nature, 389, 509–512.

    CAS  PubMed  Google Scholar 

  • Anderson, B. B., Chen, G., Gutman, D. A., Ewing, A. G. (1998). Dopamine levels of two classes of vesicles are differentially depleted by amphetamine. Brain Res 788:294–301.

    CAS  PubMed  Google Scholar 

  • Baldereschi, M., Di Carlo, A., Rocca, W. A., Vanni, P., Maggi, S., Perissinotto, E., et al. (2000). Parkinson’s disease and parkinsonism in a longitudinal study: Two-fold higher incidence in men. ILSA Working Group. Italian Longitudinal Study on Aging. Neurology, 55(9), 1358–1363.

    CAS  PubMed  Google Scholar 

  • Bilska, A., Dubiel, M., Sokolowska-Jezewicz, M., Lorenc-Koci, E., & Wlodek, L. (2007). Alpha-lipoic acid differently affects the reserpine-induced oxidative stress in the striatum and prefrontal cortex of rat brain. Neuroscience, 146(4), 1758–1771.

    CAS  PubMed  Google Scholar 

  • Blaschko, H. (1952). Amine oxidase and amine metabolism. Pharmacological Reviews, 4(4), 415–458.

    CAS  PubMed  Google Scholar 

  • Burke, W. J., Li, S. W., Chung, H. D., Ruggiero, D. A., Kristal, B. S., Johnson, E. M., et al. (2004). Neurotoxicity of MAO metabolites of catecholamine neurotransmitters: Role in neurodegenerative diseases. Neurotoxicology, 25(1–2), 101–115.

    CAS  PubMed  Google Scholar 

  • Carlsson, A., Lindqvist, M., & Magnusson, T. (1957). 3,4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature, 180(4596), 1200.

    CAS  PubMed  Google Scholar 

  • Caudle, W. M., Richardson, J. R., Wang, M. Z., Taylor, T. N., Guillot, T. S., McCormack, A. L., et al. (2007). Reduced vesicular storage of dopamine causes progressive nigrostriatal neurodegeneration. Journal of Neuroscience, 27(30), 8138–8148.

    CAS  PubMed  Google Scholar 

  • Chan, P. L., Nutt, J. G., & Holford, N. H. (2007). Levodopa slows progression of Parkinson’s disease: External validation by clinical trial simulation. Pharmaceutical Research, 24(4), 791–802.

    CAS  PubMed  Google Scholar 

  • Chen, L., Ding, Y., Cagniard, B., Van Laar, A. D., Mortimer, A., Chi, W., et al. (2008). Unregulated cytosolic dopamine causes neurodegeneration associated with oxidative stress in mice. Journal of Neuroscience, 28(2), 425–433.

    PubMed  Google Scholar 

  • Colebrooke, R. E., Humby, T., Lynch, P. J., McGowan, D. P., Xia, J., & Emson, P. C. (2006). Age-related decline in striatal dopamine content and motor performance occurs in the absence of nigral cell loss in a genetic mouse model of Parkinson’s disease. European Journal of Neuroscience, 24(9), 2622–2630.

    PubMed  Google Scholar 

  • Collins, M. A., & Bigdeli, M. G. (1975). Tetrahydroisoquinolines in vivo. I. Rat brain formation of salsolinol, a condensation product of dopamine and acetaldehyde, under certain conditions during ethanol intoxication. Life Sciences, 16(4), 585–601.

    CAS  PubMed  Google Scholar 

  • Cubells, J. F., Rayport, S., Rajendran, G., & Sulzer, D. (1994). Methamphetamine neurotoxicity involves vacuolation of endocytic organelles and dopamine-dependent intracellular oxidative stress. Journal of Neuroscience, 14, 2260–2271.

    CAS  PubMed  Google Scholar 

  • Daubner, S. C., Le, T., & Wang, S. (2011). Tyrosine hydroxylase and regulation of dopamine synthesis. Archives of Biochemistry and Biophysics, 508(1), 1–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dauer, W., & Przedborski, S. (2003). Parkinson’s disease: Mechanisms and models. Neuron, 39(6), 889–909.

    CAS  PubMed  Google Scholar 

  • Daveu, C., Servy, C., Dendane, M., Marin, P., & Ducrocq, C. (1997). Oxidation and nitration of catecholamines by nitrogen oxides derived from nitric oxide. Nitric Oxide, 1(3), 234–243.

    CAS  PubMed  Google Scholar 

  • Dawson, T. M., Ko, H. S., & Dawson, V. L. (2010). Genetic animal models of Parkinson’s disease. Neuron, 66(5), 646–661.

    CAS  PubMed Central  PubMed  Google Scholar 

  • de Rijk, M. C., Tzourio, C., Breteler, M. M., Dartigues, J. F., Amaducci, L., Lopez-Pousa, S., et al. (1997). Prevalence of parkinsonism and Parkinson’s disease in Europe: The EUROPARKINSON Collaborative Study. European Community Concerted Action on the Epidemiology of Parkinson’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 62(1), 10–15.

    PubMed Central  PubMed  Google Scholar 

  • Deitrich, R., & Erwin, V. (1980). Biogenic amine-aldehyde condensation products: Tetrahydroisoquinolines and tryptolines (beta-carbolines). Annual Review of Pharmacology and Toxicology, 20, 55–80.

    CAS  PubMed  Google Scholar 

  • Delaville, C., Deurwaerdere, P. D., & Benazzouz, A. (2011). Noradrenaline and Parkinson’s disease. Frontiers in Systems Neuroscience, 5(31), 31.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Edwards, R. H. (1993). Neural degeneration and the transport of neurotransmitters. Annals of Neurology, 34(5), 638–645.

    CAS  PubMed  Google Scholar 

  • Edwards, R. H. (2007). The neurotransmitter cycle and quantal size. Neuron, 55(6), 835–858.

    CAS  PubMed  Google Scholar 

  • Erickson, J. D., Schafer, M. K., Bonner, T. I., Eiden, L. E., & Weihe, E. (1996). Distinct pharmacological properties and distribution in neurons and endocrine cells of two isoforms of the human vesicular monoamine transporter. Proceedings of the National Academy of Sciences of the United States of America, 93(10), 5166–5171.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eriksen, J. L., Przedborski, S., & Petrucelli, L. (2005). Gene dosage and pathogenesis of Parkinson’s disease. Trends in Molecular Medicine, 11(3), 91–96.

    CAS  PubMed  Google Scholar 

  • Fahn, S. (2008). The history of dopamine and levodopa in the treatment of Parkinson’s disease. Movement Disorders, 23(Suppl 3), S497–S508.

    PubMed  Google Scholar 

  • Fahn, S., & Sulzer, D. (2004). Neurodegeneration and neuroprotection in Parkinson disease. NeuroRx, 1(1), 139–154.

    PubMed Central  PubMed  Google Scholar 

  • Fahn, S., Oakes, D., Shoulson, I., Kieburtz, K., Rudolph, A., Lang, A., et al. (2004). Levodopa and the progression of Parkinson’s disease. The New England Journal of Medicine, 351(24), 2498–2508.

    CAS  PubMed  Google Scholar 

  • Fitzpatrick, P. F. (2000). The aromatic amino acid hydroxylases. Advances in Enzymology and Related Areas of Molecular Biology, 74, 235–294.

    CAS  PubMed  Google Scholar 

  • Fluman, N., & Bibi, E. (2009). Bacterial multidrug transport through the lens of the major facilitator superfamily. Biochimica et Biophysica Acta, 1794(5), 738–747.

    CAS  PubMed  Google Scholar 

  • Fon, E. A., Pothos, E. N., Sun, B. C., Killeen, N., Sulzer, D., & Edwards, R. H. (1997). Vesicular transport regulates monoamine storage and release but is not essential for amphetamine action. Neuron, 19(6), 1271–1283.

    CAS  PubMed  Google Scholar 

  • Fornai, F., di Poggio, A. B., Pellegrini, A., Ruggieri, S., & Paparelli, A. (2007). Noradrenaline in Parkinson’s disease: from disease progression to current therapeutics. Current Medicinal Chemistry, 14(22), 2330–2334.

    CAS  PubMed  Google Scholar 

  • Fornstedt, B., & Carlsson, A. (1989). A marked rise in 5-S-cysteinyl-dopamine levels in guinea-pig striatum following reserpine treatment. Journal of Neural Transmission, 76(2), 155–161.

    CAS  PubMed  Google Scholar 

  • Fornstedt, B., Brun, A., Rosengren, E., & Carlsson, A. (1989). The apparent autoxidation rate of catechols in dopamine-rich regions of human brains increases with the degree of depigmentation of substantia nigra. Journal of Neural Transmission. Parkinson's Disease and Dementia Section, 1(4), 279–295.

    CAS  PubMed  Google Scholar 

  • Fuentes, P., Paris, I., Nassif, M., Caviedes, P., & Segura-Aguilar, J. (2007). Inhibition of VMAT-2 and DT-diaphorase induce cell death in a substantia nigra-derived cell line – An experimental cell model for dopamine toxicity studies. Chemical Research in Toxicology, 20(5), 776–783.

    CAS  PubMed  Google Scholar 

  • Fukui, M., Rodriguiz, R. M., Zhou, J., Jiang, S. X., Phillips, L. E., Caron, M. G., et al. (2007). Vmat2 heterozygous mutant mice display a depressive-like phenotype. Journal of Neuroscience, 27(39), 10520–10529.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fumagalli, F., Gainetdinov, R. R., Wang, Y. M., Valenzano, K. J., Miller, G. W., & Caron, M. G. (1999). Increased methamphetamine neurotoxicity in heterozygous vesicular monoamine transporter 2 knock-out mice. Journal of Neuroscience, 19(7), 2424–2431.

    CAS  PubMed  Google Scholar 

  • Gainetdinov, R. R., Fumagalli, F., Wang, Y. M., Jones, S. R., Levey, A. I., Miller, G. W., et al. (1998a). Increased MPTP neurotoxicity in vesicular monoamine transporter 2 heterozygote knockout mice. Journal of Neurochemistry, 70, 1973–1978.

    CAS  PubMed  Google Scholar 

  • Gainetdinov, R. R., Jones, S. R., Fumagalli, F., Wightman, R. M., & Caron, M. G. (1998b). Re-evaluation of the role of the dopamine transporter in dopamine system homeostasis. Brain Research. Brain Research Reviews, 26(2–3), 148–153.

    CAS  PubMed  Google Scholar 

  • Gamo, N. J., & Arnsten, A. F. (2011). Molecular modulation of prefrontal cortex: Rational development of treatments for psychiatric disorders. Behavioral Neuroscience, 125(3), 282–296.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Glatt, C. E., Wahner, A. D., White, D. J., Ruiz-Linares, A., & Ritz, B. (2006). Gain-of-function haplotypes in the vesicular monoamine transporter promoter are protective for Parkinson disease in women. Human Molecular Genetics, 15(2), 299–305.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goldstein, M., & Lieberman, A. (1992). The role of the regulatory enzymes of catecholamine synthesis in Parkinson’s disease. Neurology, 42(Suppl 4), 8–12.

    CAS  PubMed  Google Scholar 

  • Graham, D. G. (1978). Oxidative pathways for catecholamines in the genesis of neuromelanin and cytotoxic quinones. Molecular Pharmacology, 14(4), 633–643.

    CAS  PubMed  Google Scholar 

  • Gubernator, N. G., Zhang, H., Staal, R. G., Mosharov, E. V., Pereira, D. B., Yue, M., et al. (2009). Fluorescent false neurotransmitters visualize dopamine release from individual presynaptic terminals. Science, 324(5933), 1441–1444.

    CAS  PubMed  Google Scholar 

  • Guillot, T. S., & Miller, G. W. (2009). Protective actions of the vesicular monoamine transporter 2 (VMAT2) in monoaminergic neurons. Molecular Neurobiology, 39(2), 149–170.

    CAS  PubMed  Google Scholar 

  • Guillot, T. S., Richardson, J. R., Wang, M. Z., Li, Y. J., Taylor, T. N., Ciliax, B. J., et al. (2008). PACAP38 increases vesicular monoamine transporter 2 (VMAT2) expression and attenuates methamphetamine toxicity. Neuropeptides, 42(4), 423–434.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hadjiconstantinou, M., & Neff, N. H. (2008). Enhancing aromatic l-amino acid decarboxylase activity: Implications for L-DOPA treatment in Parkinson’s disease. CNS Neuroscience & Therapeutics, 14(4), 340–351.

    CAS  Google Scholar 

  • Hastings, T. G., & Berman, S. B. (1999). Dopamine-induced toxicity and quinone modification of proteins: Implications for Parkinson’s disease. In C. R. Creveling (Ed.), Role of catechol quinone species in cellular toxicity (pp. 69–89). Johnson City, TN: F.P. Graham Publishing.

    Google Scholar 

  • Hetzenauer, A., Sinnegger-Brauns, M. J., Striessnig, J., & Singewald, N. (2006). Brain activation pattern induced by stimulation of L-type Ca2+−channels: Contribution of Ca(V)1.3 and Ca(V)1.2 isoforms. Neuroscience, 139(3), 1005–1015.

    CAS  PubMed  Google Scholar 

  • Hirsch, E., Graybiel, A. M., & Agid, Y. A. (1988). Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease. Nature, 334(6180), 345–348.

    CAS  PubMed  Google Scholar 

  • Hnasko, T. S., Chuhma, N., Zhang, H., Goh, G. Y., Sulzer, D., Palmiter, R. D., et al. (2010). Vesicular glutamate transport promotes dopamine storage and glutamate corelease in vivo. Neuron, 65(5), 643–656.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holford, N. H., Chan, P. L., Nutt, J. G., Kieburtz, K., & Shoulson, I. (2006). Disease progression and pharmacodynamics in Parkinson disease – Evidence for functional protection with levodopa and other treatments. Journal of Pharmacokinetics and Pharmacodynamics, 33(3), 281–311.

    CAS  PubMed  Google Scholar 

  • Hornykiewicz, O. (2010). A brief history of levodopa. Journal of Neurology, 257(Suppl 2), S249–S252.

    PubMed  Google Scholar 

  • Jaffe, E. H., Marty, A., Schulte, A., & Chow, R. H. (1998). Extrasynaptic vesicular transmitter release from the somata of substantia nigra neurons in rat midbrain slices. Journal of Neuroscience, 18(10), 3548–3553.

    CAS  PubMed  Google Scholar 

  • Jentsch, T. J., Poet, M., Fuhrmann, J. C., & Zdebik, A. A. (2005). Physiological functions of CLC Cl- channels gleaned from human genetic disease and mouse models. Annual Review of Physiology, 67, 779–807.

    CAS  PubMed  Google Scholar 

  • Johnson, R. G. (1988). Accumulation of biological amines into chromaffin granules: A model for hormone and neurotransmitter transport. Physiological Reviews, 68, 232–307.

    CAS  PubMed  Google Scholar 

  • Jones, S. R., Gainetdinov, R. R., Jaber, M., Giros, B., Wightman, R. M., & Caron, M. G. (1998). Profound neuronal plasticity in response to inactivation of the dopamine transporter. Proceedings of the National Academy of Sciences of the United States of America, 95(7), 4029–4034.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaakkola, S., Mannisto, P. T., & Nissinen, E. (1987). Striatal membrane-bound and soluble catechol-O-methyl-transferase after selective neuronal lesions in the rat. Journal of Neural Transmission, 69(3–4), 221–228.

    CAS  PubMed  Google Scholar 

  • Kariya, S., Takahashi, N., Hirano, M., & Ueno, S. (2005). Increased vulnerability to L-DOPA toxicity in dopaminergic neurons From VMAT2 heterozygote knockout mice. Journal of Molecular Neuroscience, 27(3), 277–279.

    CAS  PubMed  Google Scholar 

  • Kumer, S. C., & Vrana, K. E. (1996). Intricate regulation of tyrosine hydroxylase activity and gene expression. Journal of Neurochemistry, 67(2), 443–462.

    CAS  PubMed  Google Scholar 

  • Lang, A. E. (2011). A critical appraisal of the premotor symptoms of Parkinson’s disease: Potential usefulness in early diagnosis and design of neuroprotective trials. Movement Disorders, 26(5), 775–783.

    PubMed  Google Scholar 

  • Larsen, K. E., Fon, E. A., Hastings, T. G., Edwards, R. H., & Sulzer, D. (2002). Methamphetamine-induced degeneration of dopaminergic neurons involves autophagy and upregulation of dopamine synthesis. Journal of Neuroscience, 22(20), 8951–8960.

    CAS  PubMed  Google Scholar 

  • LaVoie, M. J., & Hastings, T. G. (1999). Dopamine quinone formation and protein modification associated with the striatal neurotoxicity of methamphetamine: Evidence against a role for extracellular dopamine. Journal of Neuroscience, 19(4), 1484–1491.

    CAS  PubMed  Google Scholar 

  • Lee, M., Gubernator, N. G., Sulzer, D., & Sames, D. (2010). Development of pH-responsive fluorescent false neurotransmitters. Journal of the American Chemical Society, 132(26), 8828–8830.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liang, C. L., Nelson, O., Yazdani, U., Pasbakhsh, P., & German, D. C. (2004). Inverse relationship between the contents of neuromelanin pigment and the vesicular monoamine transporter-2: Human midbrain dopamine neurons. The Journal of Comparative Neurology, 473(1), 97–106.

    CAS  PubMed  Google Scholar 

  • Liu, Y., Peter, D., Roghani, A., Schuldiner, S., Prive, G. G., Eisenberg, D., et al. (1992a). A cDNA that suppresses MPP+ toxicity encodes a vesicular amine transporter. Cell, 70, 539–551.

    CAS  PubMed  Google Scholar 

  • Liu, Y., Roghani, A., & Edwards, R. H. (1992b). Gene transfer of a reserpine-sensitive mechanism of resistance to N-methyl-4-phenylpyridinium. Proceedings of the National Academy of Sciences of the United States of America, 89(19), 9074–9078.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lotharius, J., & Brundin, P. (2002). Impaired dopamine storage resulting from alpha-synuclein mutations may contribute to the pathogenesis of Parkinson’s disease. Human Molecular Genetics, 11(20), 2395–2407.

    CAS  PubMed  Google Scholar 

  • Marchitti, S. A., Deitrich, R. A., & Vasiliou, V. (2007). Neurotoxicity and metabolism of the catecholamine-derived 3,4-dihydroxyphenylacetaldehyde and 3,4-dihydroxyphenylglycolaldehyde: The role of aldehyde dehydrogenase. Pharmacological Reviews, 59(2), 125–150.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Markov, D., Mosharov, E. V., Setlik, W., Gershon, M. D., & Sulzer, D. (2008). Secretory vesicle rebound hyperacidification and increased quantal size resulting from prolonged methamphetamine exposure. Journal of Neurochemistry, 107(6), 1709–1721.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martin, I., Dawson, V. L., & Dawson, T. M. (2011). Recent advances in the genetics of Parkinson’s disease. Annual Review of Genomics and Human Genetics, 12:301–325.

    CAS  PubMed  Google Scholar 

  • Martinez-Vicente, M., Talloczy, Z., Kaushik, S., Massey, A. C., Mazzulli, J., Mosharov, E. V., et al. (2008). Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy. The Journal of Clinical Investigation, 118(2), 777–788.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miller, G. W., Gainetdinov, R. R., Levey, A. I., & Caron, M. G. (1999). Dopamine transporters and neuronal injury. Trends in Pharmacological Sciences, 20(10), 424–429.

    CAS  PubMed  Google Scholar 

  • Montine, T. J., Farris, D. B., & Graham, D. G. (1995). Covalent crosslinking of neurofilament proteins by oxidized catechols as a potential mechanism of Lewy body formation. Journal of Neuropathology and Experimental Neurology, 54(3), 311–319.

    CAS  PubMed  Google Scholar 

  • Mooslehner, K. A., Chan, P. M., Xu, W., Liu, L., Smadja, C., Humby, T., et al. (2001). Mice with very low expression of the vesicular monoamine transporter 2 gene survive into adulthood: Potential mouse model for parkinsonism. Molecular and Cellular Biology, 21(16), 5321–5331.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mosharov, E. V., Gong, L.-W., Khanna, B., Lindau, M., & Sulzer, D. (2003). Intracellular patch electrochemistry: Regulation of cytosolic catecholamines in chromaffin cells. Journal of Neuroscience, 23(13), 5835–5845.

    CAS  PubMed  Google Scholar 

  • Mosharov, E. V., Staal, R. G., Bove, J., Prou, D., Hananiya, A., Markov, D., et al. (2006). Alpha-synuclein overexpression increases cytosolic catecholamine concentration. Journal of Neuroscience, 26(36), 9304–9311.

    CAS  PubMed  Google Scholar 

  • Mosharov, E. V., Larsen, K. E., Kanter, E., Phillips, K. A., Wilson, K., Schmitz, Y., et al. (2009). Interplay between cytosolic dopamine, calcium, and alpha-synuclein causes selective death of substantia nigra neurons. Neuron, 62(2), 218–229.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mundorf, M. L., Hochstetler, S. E., & Wightman, R. M. (1999). Amine weak bases disrupt vesicular storage and promote exocytosis in chromaffin cells. J Neurochem 73:2397–2405.

    CAS  PubMed  Google Scholar 

  • Myohanen, T. T., Schendzielorz, N., & Mannisto, P. T. (2010). Distribution of catechol-O-methyltransferase (COMT) proteins and enzymatic activities in wild-type and soluble COMT deficient mice. Journal of Neurochemistry, 113(6), 1632–1643.

    CAS  PubMed  Google Scholar 

  • Mytilineou, C., Han, S. K., & Cohen, G. (1993). Toxic and protective effects of L-DOPA on mesencephalic cell cultures. Journal of Neurochemistry, 61(4), 1470–1478.

    CAS  PubMed  Google Scholar 

  • Naoi, M., & Maruyama, W. (2010). Monoamine oxidase inhibitors as neuroprotective agents in age-dependent neurodegenerative disorders. Current Pharmaceutical Design, 16(25), 2799–2817.

    CAS  PubMed  Google Scholar 

  • Naoi, M., Dostert, P., Yoshida, M., & Nagatsu, T. (1993). N-methylated tetrahydroisoquinolines as dopaminergic neurotoxins. Advances in Neurology, 60, 212–217.

    CAS  PubMed  Google Scholar 

  • Obeso, J. A., Marin, C., Rodriguez-Oroz, C., Blesa, J., Benitez-Temino, B., Mena-Segovia, J., et al. (2008). The basal ganglia in Parkinson’s disease: Current concepts and unexplained observations. Annals of Neurology, 64(Suppl 2), S30–S46.

    PubMed  Google Scholar 

  • Pardo, B., Mena, M. A., Casarejos, M. J., Paino, C. L., & De Yebenes, J. G. (1995). Toxic effects of L-DOPA on mesencephalic cell cultures: Protection with antioxidants. Brain Research, 682, 133–143.

    CAS  PubMed  Google Scholar 

  • Paris, I., Lozano, J., Perez-Pastene, C., Munoz, P., & Segura-Aguilar, J. (2009). Molecular and neurochemical mechanisms in PD pathogenesis. Neurotoxicity Research, 16(3), 271–279.

    CAS  PubMed  Google Scholar 

  • Peter, D., Liu, Y., Sternini, C., de Giorgio, R., Brecha, N., & Edwards, R. H. (1995). Differential expression of two vesicular monoamine transporters. Journal of Neuroscience, 15(9), 6179–6188.

    CAS  PubMed  Google Scholar 

  • Pothos, E. N., Davila, V., & Sulzer, D. (1998). Presynaptic recording of quanta from midbrain dopamine neurons and modulation of the quantal size. Journal of Neuroscience, 18(11), 4106–4118.

    CAS  PubMed  Google Scholar 

  • Pothos, E. N., Larsen, K. E., Krantz, D. E., Liu, Y., Haycock, J. W., Setlik, W., et al. (2000). Synaptic vesicle transporter expression regulates vesicle phenotype and quantal size. Journal of Neuroscience, 20(19), 7297–7306.

    CAS  PubMed  Google Scholar 

  • Ramsey, A. J., & Fitzpatrick, P. F. (2000). Effects of phosphorylation on binding of catecholamines to tyrosine hydroxylase: Specificity and thermodynamics. Biochemistry, 39(4), 773–778.

    CAS  PubMed  Google Scholar 

  • Reveron, M. E., Savelieva, K. V., Tillerson, J. L., McCormack, A. L., Di Monte, D. A., & Miller, G. W. (2002). L-DOPA does not cause neurotoxicity in VMAT2 heterozygote knockout mice. Neurotoxicology, 23(4–5), 611–619.

    CAS  PubMed  Google Scholar 

  • Ricaurte, G. A., Guillery, R. W., Seiden, L. S., Schuster, C. R., & Moore, R. Y. (1982). Dopamine nerve terminal degeneration produced by high doses of methylamphetamine in the rat brain. Brain Research, 235(1), 93–103.

    CAS  PubMed  Google Scholar 

  • Rice, M. E., Cragg, S. J., & Greenfield, S. A. (1997). Characteristics of electrically evoked somatodendritic dopamine release in substantia nigra and ventral tegmental area in vitro. Journal of Neurophysiology, 77(2), 853–862.

    CAS  PubMed  Google Scholar 

  • Rochet, J. C., Outeiro, T. F., Conway, K. A., Ding, T. T., Volles, M. J., Lashuel, H. A., et al. (2004). Interactions among alpha-synuclein, dopamine, and biomembranes: Some clues for understanding neurodegeneration in Parkinson’s disease. Journal of Molecular Neuroscience, 23(1–2), 23–34.

    CAS  PubMed  Google Scholar 

  • Rommelfanger, K. S., & Weinshenker, D. (2007). Norepinephrine: The redheaded stepchild of Parkinson's disease. Biochemical Pharmacology, 74(2), 177–190.

    CAS  PubMed  Google Scholar 

  • Sang, T. K., Chang, H. Y., Lawless, G. M., Ratnaparkhi, A., Mee, L., Ackerson, L. C., et al. (2007). A Drosophila model of mutant human parkin-induced toxicity demonstrates selective loss of dopaminergic neurons and dependence on cellular dopamine. Journal of Neuroscience, 27(5), 981–992.

    CAS  PubMed  Google Scholar 

  • Satou, T., Anderson, A. J., Itoh, T., Tamai, Y., Hayashi, Y., & Hashimoto, S. (2001). Repetitive administration of tetrabenazine induces irreversible changes in locomotion and morphology of the substantia nigra in rats. Experimental and Toxicologic Pathology, 53(4), 303–308.

    CAS  PubMed  Google Scholar 

  • Schmitt, K. C., & Reith, M. E. (1187). Regulation of the dopamine transporter: Aspects relevant to psychostimulant drugs of abuse. Annals of the New York Academy of Sciences, 1187, 316–340.

    Google Scholar 

  • Specht, C. G., & Schoepfer, R. (2001). Deletion of the alpha-synuclein locus in a subpopulation of C57BL/6J inbred mice. BMC Neuroscience, 2(11), 11.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Spencer, J. P., Whiteman, M., Jenner, P., & Halliwell, B. (2002). 5-s-Cysteinyl-conjugates of catecholamines induce cell damage, extensive DNA base modification and increases in caspase-3 activity in neurons. Journal of Neurochemistry, 81(1), 122–129.

    CAS  PubMed  Google Scholar 

  • Spina, M. B., & Cohen, G. (1989). Dopamine turnover and glutathione oxidation: Implications for Parkinson disease. Proceedings of the National Academy of Sciences of the United States of America, 86(4), 1398–1400.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stobrawa, S. M., Breiderhoff, T., Takamori, S., Engel, D., Schweizer, M., Zdebik, A. A., et al. (2001). Disruption of ClC-3, a chloride channel expressed on synaptic vesicles, leads to a loss of the hippocampus. Neuron, 29(1), 185–196.

    CAS  PubMed  Google Scholar 

  • Stuber, G. D., Hnasko, T. S., Britt, J. P., Edwards, R. H., & Bonci, A. (2010). Dopaminergic terminals in the nucleus accumbens but not the dorsal striatum corelease glutamate. Journal of Neuroscience, 30(24), 8229–8233.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sulzer, D. (2001). Alpha-synuclein and cytosolic dopamine: Stabilizing a bad situation. Nature Medicine, 7(12), 1280–1282.

    CAS  PubMed  Google Scholar 

  • Sulzer, D. (2007). Multiple hit hypotheses for dopamine neuron loss in Parkinson’s disease. Trends in Neurosciences, 30(5), 244–250.

    CAS  PubMed  Google Scholar 

  • Sulzer, D. (2011). How addictive drugs disrupt presynaptic dopamine neurotransmission. Neuron, 69(4), 628–649.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sulzer, D., & Zecca, L. (2000). Intraneuronal dopamine-quinone synthesis: A review. Neurotoxicity Research, 1(3), 181–195.

    CAS  PubMed  Google Scholar 

  • Sulzer D, Chen T, Lau Y, Kristensen H, Rayport S, Ewing A (1995). Amphetamine redistributes dopamine from synaptic vesicles to the cytosol and promotes reverse transport. J Neurosci 15:4102–4108.

    CAS  PubMed  Google Scholar 

  • Sulzer, D., Bogulavsky, J., Larsen, K. E., Behr, G., Karatekin, E., Kleinman, M. H., et al. (2000). Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles. Proceedings of the National Academy of Sciences of the United States of America, 97(22), 11869–11874.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Surmeier, D. J., Guzman, J. N., Sanchez-Padilla, J., & Goldberg, J. A. (2010). What causes the death of dopaminergic neurons in Parkinson’s disease? Progress in Brain Research, 183, 59–77.

    CAS  PubMed  Google Scholar 

  • Takahashi, N., Miner, L. L., Sora, I., Ujike, H., Revay, R. S., Kostic, V., et al. (1997). VMAT2 knockout mice: Heterozygotes display reduced amphetamine-conditioned reward, enhanced amphetamine locomotion, and enhanced MPTP toxicity. Proceedings of the National Academy of Sciences of the United States of America, 94, 9938–9943.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Taylor, T. N., Caudle, W. M., Shepherd, K. R., Noorian, A., Jackson, C. R., Iuvone, P. M., et al. (2009). Nonmotor symptoms of Parkinson’s disease revealed in an animal model with reduced monoamine storage capacity. Journal of Neuroscience, 29(25), 8103–8113.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Taylor, T. N., Caudle, W. M., & Miller, G. W. (2011). VMAT2-deficient mice display nigral and extranigral pathology and motor and nonmotor symptoms of Parkinson’s disease. Parkinsons Dis, 124165.

    Google Scholar 

  • Uhl, G. R. (1998). Hypothesis: The role of dopaminergic transporters in selective vulnerability of cells in Parkinson’s disease. Annals of Neurology, 43(5), 555–560.

    CAS  PubMed  Google Scholar 

  • van Rossum, J. M. (1966). The significance of dopamine-receptor blockade for the mechanism of action of neuroleptic drugs. Archives Internationales de Pharmacodynamie et de Thérapie, 160(2), 492–494.

    PubMed  Google Scholar 

  • Vauzour, D., Ravaioli, G., Vafeiadou, K., Rodriguez-Mateos, A., Angeloni, C., & Spencer, J. P. (2008). Peroxynitrite induced formation of the neurotoxins 5-S-cysteinyl-dopamine and DHBT-1: Implications for Parkinson’s disease and protection by polyphenols. Archives of Biochemistry and Biophysics, 476(2), 145–151.

    CAS  PubMed  Google Scholar 

  • Vergo, S., Johansen, J. L., Leist, M., & Lotharius, J. (2007). Vesicular monoamine transporter 2 regulates the sensitivity of rat dopaminergic neurons to disturbed cytosolic dopamine levels. Brain Research, 1185, 18–32.

    CAS  PubMed  Google Scholar 

  • Vila, M., & Przedborski, S. (2004). Genetic clues to the pathogenesis of Parkinson’s disease. Nature Medicine, 10(Suppl), S58–S62.

    PubMed  Google Scholar 

  • Wagner, G. C., Lucot, J. B., Schuster, C. R., & Seiden, L. S. (1983). Alpha-methyltyrosine attenuates and reserpine increases methamphetamine-induced neuronal changes. Brain Research, 270(2), 285–288.

    CAS  PubMed  Google Scholar 

  • Wang, Y. M., Gainetdinov, R. R., Fumagalli, F., Xu, F., Jones, S. R., Bock, C. B., et al. (1997). Knockout of the vesicular monoamine transporter 2 gene results in neonatal death and supersensitivity to cocaine and amphetamine. Neuron, 19(6), 1285–1296.

    CAS  PubMed  Google Scholar 

  • Weihe, E., Schafer, M. K., Erickson, J. D., & Eiden, L. E. (1994). Localization of vesicular monoamine transporter isoforms (VMAT1 and VMAT2) to endocrine cells and neurons in rat. Journal of Molecular Neuroscience, 5(3), 149–164.

    CAS  PubMed  Google Scholar 

  • Weinreb, O., Amit, T., Bar-Am, O., & Youdim, M. B. (2010). Rasagiline: a novel anti-Parkinsonian monoamine oxidase-B inhibitor with neuroprotective activity. Progress in Neurobiology, 92(3), 330–344.

    CAS  PubMed  Google Scholar 

  • Westlund, K. N., Denney, R. M., Kochersperger, L. M., Rose, R. M., & Abell, C. W. (1985). Distinct monoamine oxidase A and B populations in primate brain. Science, 230(4722), 181–183.

    CAS  PubMed  Google Scholar 

  • Wightman, R. M., Jankowski, J. A., Kennedy, R. T., Kawagoe, K. T., Schroeder, T. J., Leszczyszyn, D. J., et al. (1991). Temporally resolved catecholamine spikes correspond to single vesicle release from individual chromaffin cells. Proceedings of the National Academy of Sciences of the United States of America, 88(23), 10754–10758.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wimalasena, K. (2011). Vesicular monoamine transporters: Structure-function, pharmacology, and medicinal chemistry. Medicinal Research Reviews, 31(4), 483–519.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamamoto, H., Kamegaya, E., Hagino, Y., Imai, K., Fujikawa, A., Tamura, K., et al. (2007). Genetic deletion of vesicular monoamine transporter-2 (VMAT2) reduces dopamine transporter activity in mesencephalic neurons in primary culture. Neurochemistry International, 51(2–4), 237–244.

    CAS  PubMed  Google Scholar 

  • Yelin, R., & Schuldiner, S. (1995). The pharmacological profile of the vesicular monoamine transporter resembles that of multidrug transporters. FEBS Letters, 377(2), 201–207.

    CAS  PubMed  Google Scholar 

  • Zecca, L., Tampellini, D., Gerlach, M., Riederer, P., Fariello, R. G., & Sulzer, D. (2001). Substantia nigra neuromelanin: Structure, synthesis, and molecular behaviour. Molecular Pathology, 54(6), 414–418.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zecca, L., Fariello, R., Riederer, P., Sulzer, D., Gatti, A., & Tampellini, D. (2002). The absolute concentration of nigral neuromelanin, assayed by a new sensitive method, increases throughout the life and is dramatically decreased in Parkinson’s disease. FEBS Letters, 510(3), 216–220.

    CAS  PubMed  Google Scholar 

  • Zhang, F., & Dryhurst, G. (1994). Effects of l-cysteine on the oxidation chemistry of dopamine: New reaction pathways of potential relevance to idiopathic Parkinson’s disease. Journal of Medicinal Chemistry, 37(8), 1084–1098.

    CAS  PubMed  Google Scholar 

  • Zhu, J., & Reith, M. E. (2008). Role of the dopamine transporter in the action of psychostimulants, nicotine, and other drugs of abuse. CNS & Neurological Disorders Drug Targets, 7(5), 393–409.

    CAS  Google Scholar 

  • Zucca, F. A., Bellei, C., Giannelli, S., Terreni, M. R., Gallorini, M., Rizzio, E., et al. (2006). Neuromelanin and iron in human locus coeruleus and substantia nigra during aging: Consequences for neuronal vulnerability. Journal of Neural Transmission, 113(6), 757–767.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank Drs. David Sulzer and Yvonne Schmitz for their help during the preparation of the manuscript. The project was supported by the Picower Foundation, the Parkinson’s Disease Foundation, and grants number R01NS075222 and R03NS064373 from the National Institute of Neurological Disorders and Stroke.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene V. Mosharov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Mosharov, E.V. (2014). Regulation of DA Homeostasis and Role of VMAT2 in DA-Induced Neurodegeneration. In: Kostrzewa, R. (eds) Handbook of Neurotoxicity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5836-4_2

Download citation

Publish with us

Policies and ethics