Skip to main content

Necroptosis, a Potential Therapeutic Target for Neurological Disorders

  • Reference work entry
  • First Online:
Handbook of Neurotoxicity

Abstract

Necrosis is considered to be an unregulated and chaotic cell death. However, recent advances in cell death strategies support necroptosis as a form of regulated programmed necrotic cell death. In response to TNF-α or Fas ligands, necroptosis can be induced by cell death receptors in multiple cell lines in the presence of a caspase inhibitor z-VAD; necroptotic cell death has been found to play an important role in normal development, immunity, inflammation, cancer, and human diseases. In this chapter, the molecular mechanisms governing necroptosis, recent findings about the upstream and downstream schema of necroptosis, and potential therapeutic targets in neurological disorders are discussed. After being activated by TNF-α (or Fas ligands) and death receptors, receptor-interacting proteins 1 and 3 (RIP1 and RIP3) form a complex, which play a central role in the induction of necroptosis. RIP3 phosphorylates and activates mitochondrial proteins mixed lineage kinase domain-like protein (MLKL) and PGAM5, resulting in the execution of necroptosis by dynamin-related protein 1, the GTPase that controls mitochondrial fission. Some small molecules such as necrostain-1 and necrosulfonamide target different steps of necroptosis and impede the progress of necroptosis. FADD, caspase-8, CLIP, and CYLD positively or negatively regulate RIP1-/RIP3-dependent necroptosis by different mechanisms. Recent studies demonstrate the involvement of necroptosis in many neurological disorders including stroke, trauma, neonatal hypoxic–ischemic encephalopathy, and Huntington’s disease. As a potential therapeutic target, the understanding of necroptotic mechanisms will provide new insights to develop more potent neuroprotectants and specific therapeutic strategies for clinical treatments of neurological disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AIF:

Apoptosis-inducing factor

ANT:

Adenine nucleotide translocase

Aur-A:

Aurora-A kinase

BHA:

Butylated hydroxyanisole

CCI:

Controlled cortical impact

cIAP1/2:

Apoptosis protein 1/2

CypA:

Cyclophilin A

CypD:

Cyclophilin D

DRP1:

Dynamin-related protein 1

FADD:

Fas-associated protein with death domain

FLIPL:

FLICE-like inhibitory protein long

GLUD1:

Glutamate dehydrogenase 1

GLUL:

Glutamate–ammonia ligase

HI:

Hypoxia–ischemia

HIE:

Hypoxic–ischemic encephalopathy

HMGB1:

High-mobility group box 1 protein

HSP90:

Heat shock protein

IAPs:

Inhibitors of apoptosis

MEFs:

Mouse embryonic fibroblasts

MKRN1:

Makorin Ring Finger Protein 1

MLKL:

Mixed lineage kinase domain-like protein

OGD:

Oxygen–glucose deprivation

Plk1:

Polo-like kinase 1

RHIM:

RIP homotypic interaction motif

RIP:

Receptor-interacting protein

ROS:

Reactive oxygen species

TNFR1:

TNF receptor 1

TNF-α:

Tumor necrosis factor-α

z-VAD:

z-VAD-fmk

References

  • Andrabi, S. A., Dawson, T. M., & Dawson, V. L. (2008). Mitochondrial and nuclear cross talk in cell death: Parthanatos. Annals of the New York Academy of Sciences, 1147, 233–241.

    CAS  PubMed  Google Scholar 

  • Ashwal, S., & Pearce, W. J. (2001). Animal models of neonatal stroke. Current Opinion in Pediatrics, 13, 506–516.

    CAS  PubMed  Google Scholar 

  • Beal, M. F. (1992). Role of excitotoxicity in human neurological disease. Current Opinion in Neurobiology, 2, 657–662.

    CAS  PubMed  Google Scholar 

  • Bell, B. D., Leverrier, S., Weist, B. M., Newton, R. H., Arechiga, A. F., Luhrs, K. A., Morrissette, N. S., & Walsh, C. M. (2008). FADD and caspase-8 control the outcome of autophagic signaling in proliferating T cells. Proceedings of the National Academy of Sciences of the United States of America, 105, 16677–16682.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bertrand, M. J., Milutinovic, S., Dickson, K. M., Ho, W. C., Boudreault, A., Durkin, J., Gillard, J. W., Jaquith, J. B., Morris, S. J., & Barker, P. A. (2008). cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Molecular Cell, 30, 689–700.

    CAS  PubMed  Google Scholar 

  • Biton, S., & Ashkenazi, A. (2011). NEMO and RIP1 control cell fate in response to extensive DNA damage via TNF-alpha feedforward signaling. Cell, 145, 92–103.

    CAS  PubMed  Google Scholar 

  • Bodmer, J. L., Holler, N., Reynard, S., Vinciguerra, P., Schneider, P., Juo, P., Blenis, J., & Tschopp, J. (2000). TRAIL receptor-2 signals apoptosis through FADD and caspase-8. Nature Cell Biology, 2, 241–243.

    CAS  PubMed  Google Scholar 

  • Cabon, L., Galan-Malo, P., Bouharrour, A., Delavallee, L., Brunelle-Navas, M. N., Lorenzo, H. K., Gross, A., & Susin, S. A. (2012). BID regulates AIF-mediated caspase-independent necroptosis by promoting BAX activation. Cell Death and Differentiation, 19, 245–256.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ch’en, I. L., Beisner, D. R., Degterev, A., Lynch, C., Yuan, J., Hoffmann, A., & Hedrick, S. M. (2008). Antigen-mediated T cell expansion regulated by parallel pathways of death. Proceedings of the National Academy of Sciences of the United States of America, 105, 17463–17468.

    PubMed Central  PubMed  Google Scholar 

  • Challa, S., & Chan, F. K. (2010). Going up in flames: Necrotic cell injury and inflammatory diseases. Cellular and Molecular Life Sciences, 67, 3241–3253.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chavez-Valdez, R., Martin, L. J., Flock, D. L., & Northington, F. J. (2012). Necrostatin-1 attenuates mitochondrial dysfunction in neurons and astrocytes following neonatal hypoxia-ischemia. Neuroscience, 219, 192–203.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen, T., Fei, F., Jiang, X. F., Zhang, L., Qu, Y., Huo, K., & Fei, Z. (2012a). Down-regulation of Homer1b/c attenuates glutamate-mediated excitotoxicity through endoplasmic reticulum and mitochondria pathways in rat cortical neurons. Free Radical Biology & Medicine, 52, 208–217.

    CAS  Google Scholar 

  • Chen, W. W., Yu, H., Fan, H. B., Zhang, C. C., Zhang, M., Zhang, C., Cheng, Y., Kong, J., Liu, C. F., Geng, D., & Xu, X. (2012b). RIP1 mediates the protection of geldanamycin on neuronal injury induced by oxygen-glucose deprivation combined with zVAD in primary cortical neurons. Journal of Neurochemistry, 120, 70–77.

    CAS  PubMed  Google Scholar 

  • Cho, Y. S., Challa, S., Moquin, D., Genga, R., Ray, T. D., Guildford, M., & Chan, F. K. (2009). Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell, 137, 1112–1123.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Christofferson, D. E., & Yuan, J. (2010). Cyclophilin A release as a biomarker of necrotic cell death. Cell Death and Differentiation, 17, 1942–1943.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chuang, J. Y., Wang, Y. T., Yeh, S. H., Liu, Y. W., Chang, W. C., & Hung, J. J. (2008). Phosphorylation by c-Jun NH2-terminal kinase 1 regulates the stability of transcription factor Sp1 during mitosis. Molecular Biology of the Cell, 19, 1139–1151.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coffey, E. T., Smiciene, G., Hongisto, V., Cao, J., Brecht, S., Herdegen, T., & Courtney, M. J. (2002). c-Jun N-terminal protein kinase (JNK) 2/3 is specifically activated by stress, mediating c-Jun activation, in the presence of constitutive JNK1 activity in cerebellar neurons. The Journal of Neuroscience, 22, 4335–4345.

    CAS  PubMed  Google Scholar 

  • Declercq, W., Vanden Berghe, T., & Vandenabeele, P. (2009). RIP kinases at the crossroads of cell death and survival. Cell, 138, 229–232.

    CAS  PubMed  Google Scholar 

  • Deeraksa, A., Pan, J., Sha, Y., Liu, X. D., Eissa, N. T., Lin, S. H., & Yu-Lee, L. Y. (2013). Plk1 is upregulated in androgen-insensitive prostate cancer cells and its inhibition leads to necroptosis. Oncogene. 32(24), 2973–2983. doi: 10.1038/onc.2012.309. [Epub ahead of print].

    Google Scholar 

  • Degterev, A., Huang, Z., Boyce, M., Li, Y., Jagtap, P., Mizushima, N., Cuny, G. D., Mitchison, T. J., Moskowitz, M. A., & Yuan, J. (2005). Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nature Chemical Biology, 1, 112–119.

    CAS  PubMed  Google Scholar 

  • Delavallee, L., Cabon, L., Galan-Malo, P., Lorenzo, H. K., & Susin, S. A. (2011). AIF-mediated caspase-independent necroptosis: A new chance for targeted therapeutics. IUBMB Life, 63, 221–232.

    CAS  PubMed  Google Scholar 

  • Dillon, C. P., Oberst, A., Weinlich, R., Janke, L. J., Kang, T. B., Ben-Moshe, T., Mak, T. W., Wallach, D., & Green, D. R. (2012). Survival function of the FADD-CASPASE-8-cFLIP(L) complex. Cell Reports, 1, 401–407.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dunai, Z. A., Imre, G., Barna, G., Korcsmaros, T., Petak, I., Bauer, P. I., & Mihalik, R. (2012). Staurosporine induces necroptotic cell death under caspase-compromised conditions in U937 cells. PLoS One, 7, e41945. doi:10.1371/journal.pune.0041945. Epub 2012 Jul 31.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Duprez, L., Bertrand, M. J., Vanden Berghe, T., Dondelinger, Y., Festjens, N., & Vandenabeele, P. (2012). Intermediate domain of receptor-interacting protein kinase 1 (RIPK1) determines switch between necroptosis and RIPK1 kinase-dependent apoptosis. Journal of Biological Chemistry, 287, 14863–14872.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Edinger, A. L., & Thompson, C. B. (2004). Death by design: Apoptosis, necrosis and autophagy. Current Opinion in Cell Biology, 16, 663–669.

    CAS  PubMed  Google Scholar 

  • Ekshyyan, O., & Aw, T. Y. (2004). Apoptosis: A key in neurodegenerative disorders. Current Neurovascular Research, 1, 355–371.

    CAS  PubMed  Google Scholar 

  • Enesa, K., Zakkar, M., Chaudhury, H., le Luong, A., Rawlinson, L., Mason, J. C., Haskard, D. O., Dean, J. L., & Evans, P. C. (2008). NF-kappaB suppression by the deubiquitinating enzyme Cezanne: A novel negative feedback loop in pro-inflammatory signaling. Journal of Biological Chemistry, 283, 7036–7045.

    CAS  PubMed  Google Scholar 

  • Feoktistova, M., Geserick, P., Kellert, B., Dimitrova, D. P., Langlais, C., Hupe, M., Cain, K., MacFarlane, M., Hacker, G., & Leverkus, M. (2011). cIAPs block Ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Molecular Cell, 43, 449–463.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Festjens, N., Kalai, M., Smet, J., Meeus, A., Van Coster, R., Saelens, X., & Vandenabeele, P. (2006a). Butylated hydroxyanisole is more than a reactive oxygen species scavenger. Cell Death and Differentiation, 13, 166–169.

    CAS  PubMed  Google Scholar 

  • Festjens, N., Vanden Berghe, T., & Vandenabeele, P. (2006b). Necrosis, a well-orchestrated form of cell demise: Signalling cascades, important mediators and concomitant immune response. Biochimica et Biophysica Acta, 1757, 1371–1387.

    CAS  PubMed  Google Scholar 

  • Festjens, N., Vanden Berghe, T., Cornelis, S., & Vandenabeele, P. (2007). RIP1, a kinase on the crossroads of a cell’s decision to live or die. Cell Death and Differentiation, 14, 400–410.

    CAS  PubMed  Google Scholar 

  • Gallo, K. A., & Johnson, G. L. (2002). Mixed-lineage kinase control of JNK and p38 MAPK pathways. Nature Reviews Molecular Cell Biology, 3, 663–672.

    CAS  PubMed  Google Scholar 

  • Gu, X. H., Xu, R., Yuan, G. L., Lu, H., Gu, B. R., & Xie, H. P. (2010). Preparation of chlorogenic acid surface-imprinted magnetic nanoparticles and their usage in separation of traditional Chinese medicine. Analytica Chimica Acta, 675, 64–70.

    CAS  PubMed  Google Scholar 

  • Gunther, C., Martini, E., Wittkopf, N., Amann, K., Weigmann, B., Neumann, H., Waldner, M. J., Hedrick, S. M., Tenzer, S., Neurath, M. F., & Becker, C. (2011). Caspase-8 regulates TNF-alpha-induced epithelial necroptosis and terminal ileitis. Nature, 477, 335–339.

    PubMed Central  PubMed  Google Scholar 

  • Gunther, C., Neumann, H., Neurath, M. F., & Becker, C. (2013). Apoptosis, necrosis and necroptosis: Cell death regulation in the intestinal epithelium. Gut, 62(7), 1062–1071. Epub 2012 Jun 11. Review.

    Google Scholar 

  • Halestrap, A. P., & Brenner, C. (2003). The adenine nucleotide translocase: A central component of the mitochondrial permeability transition pore and key player in cell death. Current Medicinal Chemistry, 10, 1507–1525.

    CAS  PubMed  Google Scholar 

  • Han, J., Zhong, C. Q., & Zhang, D. W. (2011). Programmed necrosis: Backup to and competitor with apoptosis in the immune system. Nature Immunology, 12, 1143–1149.

    CAS  PubMed  Google Scholar 

  • He, S., Wang, L., Miao, L., Wang, T., Du, F., Zhao, L., & Wang, X. (2009). Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell, 137, 1100–1111.

    CAS  PubMed  Google Scholar 

  • Hitomi, J., Christofferson, D. E., Ng, A., Yao, J., Degterev, A., Xavier, R. J., & Yuan, J. (2008). Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell, 135, 1311–1323.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holler, N., Zaru, R., Micheau, O., Thome, M., Attinger, A., Valitutti, S., Bodmer, J. L., Schneider, P., Seed, B., & Tschopp, J. (2000). Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nature Immunology, 1, 489–495.

    CAS  PubMed  Google Scholar 

  • Hong, S. J., Dawson, T. M., & Dawson, V. L. (2004). Nuclear and mitochondrial conversations in cell death: PARP-1 and AIF signaling. Trends in Pharmacological Sciences, 25, 259–264.

    CAS  PubMed  Google Scholar 

  • Jang, M. S., Lee, S. J., Kang, N. S., & Kim, E. (2011). Cooperative phosphorylation of FADD by Aur-A and Plk1 in response to taxol triggers both apoptotic and necrotic cell death. Cancer Research, 71, 7207–7215.

    CAS  PubMed  Google Scholar 

  • Jouan-Lanhouet, S., Arshad, M. I., Piquet-Pellorce, C., Martin-Chouly, C., Le Moigne-Muller, G., Van Herreweghe, F., Takahashi, N., Sergent, O., Lagadic-Gossmann, D., Vandenabeele, P., Samson, M., & Dimanche-Boitrel, M. T. (2012). TRAIL induces necroptosis involving RIPK1/RIPK3-dependent PARP-1 activation. Cell Death and Differentiation, 19, 2003–2014.

    Google Scholar 

  • Kaiser, W. J., Upton, J. W., Long, A. B., Livingston-Rosanoff, D., Daley-Bauer, L. P., Hakem, R., Caspary, T., & Mocarski, E. S. (2011). RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature, 471, 368–372.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kazama, H., Ricci, J. E., Herndon, J. M., Hoppe, G., Green, D. R., & Ferguson, T. A. (2008). Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of high-mobility group box-1 protein. Immunity, 29, 21–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kelliher, M. A., Grimm, S., Ishida, Y., Kuo, F., Stanger, B. Z., & Leder, P. (1998). The death domain kinase RIP mediates the TNF-induced NF-kappaB signal. Immunity, 8, 297–303.

    CAS  PubMed  Google Scholar 

  • Kerr, J. F., Wyllie, A. H., & Currie, A. R. (1972). Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. British Journal of Cancer, 26, 239–257.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kitanaka, C., & Kuchino, Y. (1999). Caspase-independent programmed cell death with necrotic morphology. Cell Death and Differentiation, 6, 508–515.

    CAS  PubMed  Google Scholar 

  • Klionsky, D. J., Cuervo, A. M., & Seglen, P. O. (2007). Methods for monitoring autophagy from yeast to human. Autophagy, 3, 181–206.

    CAS  PubMed  Google Scholar 

  • Kramer, G., Erdal, H., Mertens, H. J., Nap, M., Mauermann, J., Steiner, G., Marberger, M., Biven, K., Shoshan, M. C., & Linder, S. (2004). Differentiation between cell death modes using measurements of different soluble forms of extracellular cytokeratin 18. Cancer Research, 64, 1751–1756.

    CAS  PubMed  Google Scholar 

  • Kreuz, S., Siegmund, D., Rumpf, J. J., Samel, D., Leverkus, M., Janssen, O., Hacker, G., Dittrich-Breiholz, O., Kracht, M., Scheurich, P., & Wajant, H. (2004). NFkappaB activation by Fas is mediated through FADD, caspase-8, and RIP and is inhibited by FLIP. The Journal of Cell Biology, 166, 369–380.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krishnakumar, R., & Kraus, W. L. (2010). The PARP side of the nucleus: Molecular actions, physiological outcomes, and clinical targets. Molecular Cell, 39, 8–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lau, A., & Tymianski, M. (2010). Glutamate receptors, neurotoxicity and neurodegeneration. Pflügers Archiv, 460, 525–542.

    CAS  PubMed  Google Scholar 

  • Lee, E. W., Kim, J. H., Ahn, Y. H., Seo, J., Ko, A., Jeong, M., Kim, S. J., Ro, J. Y., Park, K. M., Lee, H. W., Park, E. J., Chun, K. H., & Song, J. (2012). Ubiquitination and degradation of the FADD adaptor protein regulate death receptor-mediated apoptosis and necroptosis. Nature Communications, 3, 978.

    PubMed  Google Scholar 

  • Lewis, J., Devin, A., Miller, A., Lin, Y., Rodriguez, Y., Neckers, L., & Liu, Z. G. (2000). Disruption of hsp90 function results in degradation of the death domain kinase, receptor-interacting protein (RIP), and blockage of tumor necrosis factor-induced nuclear factor-kappaB activation. Journal of Biological Chemistry, 275, 10519–10526.

    CAS  PubMed  Google Scholar 

  • Li, Y., Yang, X., Ma, C., Qiao, J., & Zhang, C. (2008). Necroptosis contributes to the NMDA-induced excitotoxicity in rat’s cultured cortical neurons. Neuroscience Letters, 447, 120–123.

    CAS  PubMed  Google Scholar 

  • Lin, Y., Choksi, S., Shen, H. M., Yang, Q. F., Hur, G. M., Kim, Y. S., Tran, J. H., Nedospasov, S. A., & Liu, Z. G. (2004). Tumor necrosis factor-induced nonapoptotic cell death requires receptor-interacting protein-mediated cellular reactive oxygen species accumulation. Journal of Biological Chemistry, 279, 10822–10828.

    CAS  PubMed  Google Scholar 

  • Linder, S., Olofsson, M. H., Herrmann, R., & Ulukaya, E. (2010). Utilization of cytokeratin-based biomarkers for pharmacodynamic studies. Expert Review of Molecular Diagnostics, 10, 353–359.

    CAS  PubMed  Google Scholar 

  • Long, J. S., & Ryan, K. M. (2012). New frontiers in promoting tumour cell death: Targeting apoptosis, necroptosis and autophagy. Oncogene, 31, 5045–5060.

    Google Scholar 

  • Lu, J. V., & Walsh, C. M. (2012). Programmed necrosis and autophagy in immune function. Immunological Reviews, 249, 205–217.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lu, J. V., Weist, B. M., van Raam, B. J., Marro, B. S., Nguyen, L. V., Srinivas, P., Bell, B. D., Luhrs, K. A., Lane, T. E., Salvesen, G. S., & Walsh, C. M. (2011). Complementary roles of Fas-associated death domain (FADD) and receptor interacting protein kinase-3 (RIPK3) in T-cell homeostasis and antiviral immunity. Proceedings of the National Academy of Sciences of the United States of America, 108, 15312–15317.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Macurek, L., Lindqvist, A., & Medema, R. H. (2009). Aurora-A and hBora join the game of Polo. Cancer Research, 69, 4555–4558.

    CAS  PubMed  Google Scholar 

  • McComb, S., Cheung, H. H., Korneluk, R. G., Wang, S., Krishnan, L., & Sad, S. (2012). cIAP1 and cIAP2 limit macrophage necroptosis by inhibiting Rip1 and Rip3 activation. Cell Death and Differentiation, 19, 1791–1801.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meloni, B. P., Meade, A. J., Kitikomolsuk, D., & Knuckey, N. W. (2011). Characterisation of neuronal cell death in acute and delayed in vitro ischemia (oxygen-glucose deprivation) models. Journal of Neuroscience Methods, 195, 67–74.

    PubMed  Google Scholar 

  • Meylan, E., & Tschopp, J. (2005). The RIP kinases: Crucial integrators of cellular stress. Trends in Biochemical Sciences, 30, 151–159.

    CAS  PubMed  Google Scholar 

  • Moquin, D., & Chan, F. K. (2010). The molecular regulation of programmed necrotic cell injury. Trends in Biochemical Sciences, 35, 434–441.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakagawa, T., Shimizu, S., Watanabe, T., Yamaguchi, O., Otsu, K., Yamagata, H., Inohara, H., Kubo, T., & Tsujimoto, Y. (2005). Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature, 434, 652–658.

    CAS  PubMed  Google Scholar 

  • Northington, F. J., Chavez-Valdez, R., Graham, E. M., Razdan, S., Gauda, E. B., & Martin, L. J. (2011). Necrostatin decreases oxidative damage, inflammation, and injury after neonatal HI. Journal of Cerebral Blood Flow and Metabolism, 31, 178–189.

    CAS  PubMed Central  PubMed  Google Scholar 

  • O’Donnell, M. A., Perez-Jimenez, E., Oberst, A., Ng, A., Massoumi, R., Xavier, R., Green, D. R., & Ting, A. T. (2011). Caspase 8 inhibits programmed necrosis by processing CYLD. Nature Cell Biology, 13, 1437–1442.

    PubMed Central  PubMed  Google Scholar 

  • Oberst, A., Dillon, C. P., Weinlich, R., McCormick, L. L., Fitzgerald, P., Pop, C., Hakem, R., Salvesen, G. S., & Green, D. R. (2011). Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature, 471, 363–367.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Perez-Pinzon, M. A., Stetler, R. A., & Fiskum, G. (2012). Novel mitochondrial targets for neuroprotection. Journal of Cerebral Blood Flow and Metabolism, 32, 1362–1376.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pop, C., Oberst, A., Drag, M., Van Raam, B. J., Riedl, S. J., Green, D. R., & Salvesen, G. S. (2011). FLIP(L) induces caspase 8 activity in the absence of interdomain caspase 8 cleavage and alters substrate specificity. Biochemical Journal, 433, 447–457.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rebe, C., Cathelin, S., Launay, S., Filomenko, R., Prevotat, L., L’Ollivier, C., Gyan, E., Micheau, O., Grant, S., Dubart-Kupperschmitt, A., Fontenay, M., & Solary, E. (2007). Caspase-8 prevents sustained activation of NF-kappaB in monocytes undergoing macrophagic differentiation. Blood, 109, 1442–1450.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rosenbaum, D. M., Degterev, A., David, J., Rosenbaum, P. S., Roth, S., Grotta, J. C., Cuny, G. D., Yuan, J., & Savitz, S. I. (2010). Necroptosis, a novel form of caspase-independent cell death, contributes to neuronal damage in a retinal ischemia-reperfusion injury model. Journal of Neuroscience Research, 88, 1569–1576.

    CAS  PubMed  Google Scholar 

  • Sarkar, F. H., & Li, Y. (2006). Markers of apoptosis. Methods in Molecular Medicine, 120, 147–160.

    CAS  PubMed  Google Scholar 

  • Scaffidi, P., Misteli, T., & Bianchi, M. E. (2002). Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature, 418, 191–195.

    CAS  PubMed  Google Scholar 

  • Schon, E. A., & Przedborski, S. (2011). Mitochondria: The next (neurode)generation. Neuron, 70, 1033–1053.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schweichel, J. U., & Merker, H. J. (1973). The morphology of various types of cell death in prenatal tissues. Teratology, 7, 253–266.

    CAS  PubMed  Google Scholar 

  • Shembade, N., Ma, A., & Harhaj, E. W. (2010). Inhibition of NF-kappaB signaling by A20 through disruption of ubiquitin enzyme complexes. Science, 327, 1135–1139.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Simenc, J., & Lipnik-Stangelj, M. (2012). Staurosporine induces apoptosis and necroptosis in cultured rat astrocytes. Drug and Chemical Toxicology, 35, 399–405

    Google Scholar 

  • Stanger, B. Z., Leder, P., Lee, T. H., Kim, E., & Seed, B. (1995). RIP: A novel protein containing a death domain that interacts with Fas/APO-1 (CD95) in yeast and causes cell death. Cell, 81, 513–523.

    CAS  PubMed  Google Scholar 

  • Sun, L., Wang, H., Wang, Z., He, S., Chen, S., Liao, D., Wang, L., Yan, J., Liu, W., Lei, X., & Wang, X. (2012). Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell, 148, 213–227.

    CAS  PubMed  Google Scholar 

  • Temkin, V., Huang, Q., Liu, H., Osada, H., & Pope, R. M. (2006). Inhibition of ADP/ATP exchange in receptor-interacting protein-mediated necrosis. Molecular and Cellular Biology, 26, 2215–2225.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tenev, T., Bianchi, K., Darding, M., Broemer, M., Langlais, C., Wallberg, F., Zachariou, A., Lopez, J., MacFarlane, M., Cain, K., & Meier, P. (2011). The Ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Molecular Cell, 43, 432–448.

    CAS  PubMed  Google Scholar 

  • Teng, X., Degterev, A., Jagtap, P., Xing, X., Choi, S., Denu, R., Yuan, J., & Cuny, G. D. (2005). Structure-activity relationship study of novel necroptosis inhibitors. Bioorganic & Medicinal Chemistry Letters, 15, 5039–5044.

    CAS  Google Scholar 

  • Teng, X., Keys, H., Jeevanandam, A., Porco, J. A., Jr., Degterev, A., Yuan, J., & Cuny, G. D. (2007). Structure-activity relationship study of [1,2,3]thiadiazole necroptosis inhibitors. Bioorganic & Medicinal Chemistry Letters, 17, 6836–6840.

    CAS  Google Scholar 

  • Teng, X., Keys, H., Yuan, J., Degterev, A., & Cuny, G. D. (2008). Structure-activity relationship and liver microsome stability studies of pyrrole necroptosis inhibitors. Bioorganic & Medicinal Chemistry Letters, 18, 3219–3223.

    CAS  Google Scholar 

  • Tourneur, L., & Chiocchia, G. (2010). FADD: A regulator of life and death. Trends in Immunology, 31, 260–269.

    CAS  PubMed  Google Scholar 

  • van Wijk, S. J., & Hageman, G. J. (2005). Poly(ADP-ribose) polymerase-1 mediated caspase-independent cell death after ischemia/reperfusion. Free Radical Biology & Medicine, 39, 81–90.

    Google Scholar 

  • Vandenabeele, P., Galluzzi, L., Vanden Berghe, T., & Kroemer, G. (2010). Molecular mechanisms of necroptosis: An ordered cellular explosion. Nature Reviews Molecular Cell Biology, 11, 700–714.

    CAS  PubMed  Google Scholar 

  • Vanlangenakker, N., Vanden Berghe, T., Bogaert, P., Laukens, B., Zobel, K., Deshayes, K., Vucic, D., Fulda, S., Vandenabeele, P., & Bertrand, M. J. (2011). cIAP1 and TAK1 protect cells from TNF-induced necrosis by preventing RIP1/RIP3-dependent reactive oxygen species production. Cell Death and Differentiation, 18, 656–665.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vanlangenakker, N., Vanden Berghe, T., & Vandenabeele, P. (2012). Many stimuli pull the necrotic trigger, an overview. Cell Death and Differentiation, 19, 75–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vosler, P. S., Graham, S. H., Wechsler, L. R., & Chen, J. (2009). Mitochondrial targets for stroke: Focusing basic science research toward development of clinically translatable therapeutics. Stroke, 40, 3149–3155.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang, K., Li, J., Degterev, A., Hsu, E., Yuan, J., & Yuan, C. (2007). Structure-activity relationship analysis of a novel necroptosis inhibitor, Necrostatin-5. Bioorganic & Medicinal Chemistry Letters, 17, 1455–1465.

    CAS  Google Scholar 

  • Wang, L., Du, F., & Wang, X. (2008). TNF-alpha induces two distinct caspase-8 activation pathways. Cell, 133, 693–703.

    CAS  PubMed  Google Scholar 

  • Wang, Z., Jiang, H., Chen, S., Du, F., & Wang, X. (2012). The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell, 148, 228–243.

    CAS  PubMed  Google Scholar 

  • Welz, P. S., Wullaert, A., Vlantis, K., Kondylis, V., Fernandez-Majada, V., Ermolaeva, M., Kirsch, P., Sterner-Kock, A., van Loo, G., & Pasparakis, M. (2011). FADD prevents RIP3-mediated epithelial cell necrosis and chronic intestinal inflammation. Nature, 477, 330–334.

    CAS  PubMed  Google Scholar 

  • West, T., Atzeva, M., & Holtzman, D. M. (2006). Caspase-3 deficiency during development increases vulnerability to hypoxic-ischemic injury through caspase-3-independent pathways. Neurobiology of Disease, 22, 523–537.

    CAS  PubMed  Google Scholar 

  • Wright, A., Reiley, W. W., Chang, M., Jin, W., Lee, A. J., Zhang, M., & Sun, S. C. (2007). Regulation of early wave of germ cell apoptosis and spermatogenesis by deubiquitinating enzyme CYLD. Developmental Cell, 13, 705–716.

    CAS  PubMed  Google Scholar 

  • Xu, X., Chua, C. C., Gao, J., Hamdy, R. C., & Chua, B. H. (2006). Humanin is a novel neuroprotective agent against stroke. Stroke, 37, 2613–2619.

    CAS  PubMed  Google Scholar 

  • Xu, X., Chua, C. C., Kong, J., Kostrzewa, R. M., Kumaraguru, U., Hamdy, R. C., & Chua, B. H. (2007). Necrostatin-1 protects against glutamate-induced glutathione depletion and caspase-independent cell death in HT-22 cells. Journal of Neurochemistry, 103, 2004–2014.

    CAS  PubMed  Google Scholar 

  • Xu, X., Chua, C. C., Zhang, M., Geng, D., Liu, C. F., Hamdy, R. C., & Chua, B. H. (2010a). The role of PARP activation in glutamate-induced necroptosis in HT-22 cells. Brain Research, 1343, 206–212.

    CAS  PubMed  Google Scholar 

  • Xu, X., Chua, K. W., Chua, C. C., Liu, C. F., Hamdy, R. C., & Chua, B. H. (2010b). Synergistic protective effects of humanin and necrostatin-1 on hypoxia and ischemia/reperfusion injury. Brain Research, 1355, 189–194.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yahiro, K., Satoh, M., Nakano, M., Hisatsune, J., Isomoto, H., Sap, J., Suzuki, H., Nomura, F., Noda, M., Moss, J., & Hirayama, T. (2012). Low-density Lipoprotein Receptor-related Protein-1 (LRP1) mediates autophagy and apoptosis caused by Helicobacter pylori VacA. Journal of Biological Chemistry, 287, 31104–31115.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yeh, W. C., Itie, A., Elia, A. J., Ng, M., Shu, H. B., Wakeham, A., Mirtsos, C., Suzuki, N., Bonnard, M., Goeddel, D. V., & Mak, T. W. (2000). Requirement for Casper (c-FLIP) in regulation of death receptor-induced apoptosis and embryonic development. Immunity, 12, 633–642.

    CAS  PubMed  Google Scholar 

  • You, Z., Savitz, S. I., Yang, J., Degterev, A., Yuan, J., Cuny, G. D., Moskowitz, M. A., & Whalen, M. J. (2008). Necrostatin-1 reduces histopathology and improves functional outcome after controlled cortical impact in mice. Journal of Cerebral Blood Flow and Metabolism, 28, 1564–1573.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yuan, J., & Kroemer, G. (2010). Alternative cell death mechanisms in development and beyond. Genes & Development, 24, 2592–2602.

    CAS  Google Scholar 

  • Zhang, D. W., Shao, J., Lin, J., Zhang, N., Lu, B. J., Lin, S. C., Dong, M. Q., & Han, J. (2009). RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science, 325, 332–336.

    CAS  PubMed  Google Scholar 

  • Zhang, D., Lin, J., & Han, J. (2010). Receptor-interacting protein (RIP) kinase family. Cellular & Molecular Immunology, 7, 243–249.

    CAS  Google Scholar 

  • Zhang, H., Zhou, X., McQuade, T., Li, J., Chan, F. K., & Zhang, J. (2011a). Functional complementation between FADD and RIP1 in embryos and lymphocytes. Nature, 471, 373–376.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang, Z., Shi, R., Weng, J., Xu, X., Li, X. M., Gao, T. M., & Kong, J. (2011b). The proapoptotic member of the Bcl-2 family Bcl-2/E1B-19 K-interacting protein 3 is a mediator of caspase-independent neuronal death in excitotoxicity. FEBS Journal, 278, 134–142.

    CAS  PubMed  Google Scholar 

  • Zhao, J., Jitkaew, S., Cai, Z., Choksi, S., Li, Q., Luo, J., & Liu, Z. G. (2012). Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proceedings of the National Academy of Sciences of the United States of America, 109, 5322–5327.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zheng, W., Degterev, A., Hsu, E., Yuan, J., & Yuan, C. (2008). Structure-activity relationship study of a novel necroptosis inhibitor, necrostatin-7. Bioorganic & Medicinal Chemistry Letters, 18, 4932–4935.

    CAS  Google Scholar 

  • Zhu, S., Zhang, Y., Bai, G., & Li, H. (2011). Necrostatin-1 ameliorates symptoms in R6/2 transgenic mouse model of Huntington’s disease. Cell Death and Disease, 2, e115.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This chapter and related studies were supported by grants 30700245, 81071095, and 81120108011 from the National Natural Science Foundation of China (to XX) and the Priority Academic Program Development of Jiangsu Higher Education Institutions of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingshun Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Chen, J., Kostrzewa, R.M., Xu, X. (2014). Necroptosis, a Potential Therapeutic Target for Neurological Disorders. In: Kostrzewa, R. (eds) Handbook of Neurotoxicity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5836-4_166

Download citation

Publish with us

Policies and ethics