Skip to main content

Autophagic Pathways and Parkinson Disease

  • Reference work entry
  • First Online:
Handbook of Neurotoxicity

Abstract

Autophagy is responsible for the degradation and recycling of intracellular material including organelles, cytosolic proteins, and accumulated misfolded proteins. Increasing evidence implicates autophagy dysfunction in several neurodegenerative disorders including Parkinson’s disease (PD). In this chapter, we analyze recent studies that provide new links between genes associated to PD and the autophagy process. Mutations in PD-associated proteins like α-synuclein, parkin, PINK1, LRRK2, DJ-1, UCH-L1, ATP12A3, and GBA have been recently directly or indirectly linked to alterations in the autophagic system, thereby contributing to the understanding of the role of this system in the pathogenesis of Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Alzheimer’s disease

ALS:

Amyotrophic lateral sclerosis

CMA:

Chaperone-mediated autophagy

GBase:

Glucocerebrosidase protein

GD:

Gaucher’s disease

HD:

Huntington’s disease

LB:

Lewy bodies

LIR:

LC3-interacting region

LMP:

Lysosomal membrane permeabilization

LSD:

Lysosomal storage disorders

MPTP:

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

MTOC:

Microtubule-organizing center

PD:

Parkinson’s disease

ROS:

Reactive oxygen species

SNpc:

Substantia nigra pars compacta

UBA domain:

Ubiquitin-associated domain

UPS:

Ubiquitin-proteasome system

WT:

Wild type

References

  • Agarraberes, F. A., & Dice, J. F. (2001). A molecular chaperone complex at the lysosomal membrane is required for protein translocation. Journal of Cell Science, 114, 2491–2499.

    CAS  PubMed  Google Scholar 

  • Ahlberg, J., & Glaumann, H. (1985). Uptake–microautophagy–and degradation of exogenous proteins by isolated rat liver lysosomes. Effects of pH, ATP, and inhibitors of proteolysis. Experimental and Molecular Pathology, 42, 78–88.

    CAS  PubMed  Google Scholar 

  • Alegre-Abarrategui, J., Christian, H., Lufino, M. M., Mutihac, R., Venda, L. L., Ansorge, O., & Wade-Martins, R. (2009). LRRK2 regulates autophagic activity and localizes to specific membrane microdomains in a novel human genomic reporter cellular model. Human Molecular Genetics, 18, 4022–4034.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Anderson, J. P., Walker, D. E., Goldstein, J. M., de Laat, R., Banducci, K., Caccavello, R. J., Barbour, R., Huang, J., Kling, K., Lee, M., Diep, L., Keim, P. S., Shen, X., Chataway, T., Schlossmacher, M. G., Seubert, P., Schenk, D., Sinha, S., Gai, W. P., & Chilcote, T. J. (2006). Phosphorylation of Ser-129 is the dominant pathological modification of alpha-synuclein in familial and sporadic Lewy body disease. The Journal of Biological Chemistry, 281, 29739–29752.

    CAS  PubMed  Google Scholar 

  • Anglade, P., Vyas, S., Javoy-Agid, F., Herrero, M. T., Michel, P. P., Marquez, J., Mouatt-Prigent, A., Ruberg, M., Hirsch, E. C., & Agid, Y. (1997). Apoptosis and autophagy in nigral neurons of patients with Parkinson’s disease. Histology and Histopathology, 12, 25–31.

    CAS  PubMed  Google Scholar 

  • Bennett, M. C., Bishop, J. F., Leng, Y., Chock, P. B., Chase, T. N., & Mouradian, M. M. (1999). Degradation of alpha-synuclein by proteasome. The Journal of Biological Chemistry, 274, 33855–33858.

    CAS  PubMed  Google Scholar 

  • Bernales, S., Schuck, S., & Walter, P. (2007). ER-phagy: Selective autophagy of the endoplasmic reticulum. Autophagy, 3, 285–287.

    PubMed  Google Scholar 

  • Bjedov, I., Toivonen, J. M., Kerr, F., Slack, C., Jacobson, J., Foley, A., & Partridge, L. (2010). Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metabolism, 11, 35–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blackinton, J., Lakshminarasimhan, M., Thomas, K. J., Ahmad, R., Greggio, E., Raza, A. S., Cookson, M. R., & Wilson, M. A. (2009). Formation of a stabilized cysteine sulfinic acid is critical for the mitochondrial function of the parkinsonism protein DJ-1. The Journal of Biological Chemistry, 284, 6476–6485.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bohley, P., & Seglen, P. O. (1992). Proteases and proteolysis in the lysosome. Experientia, 48, 151–157.

    CAS  PubMed  Google Scholar 

  • Boland, B., Kumar, A., Lee, S., Platt, F. M., Wegiel, J., Yu, W. H., & Nixon, R. A. (2008). Autophagy induction and autophagosome clearance in neurons: Relationship to autophagic pathology in Alzheimer’s disease. Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 28, 6926–6937.

    CAS  Google Scholar 

  • Bonifati, V., Rizzu, P., van Baren, M. J., Schaap, O., Breedveld, G. J., Krieger, E., Dekker, M. C., Squitieri, F., Ibanez, P., Joosse, M., van Dongen, J. W., Vanacore, N., van Swieten, J. C., Brice, A., Meco, G., van Duijn, C. M., Oostra, B. A., & Heutink, P. (2003). Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science, 299, 256–259.

    CAS  PubMed  Google Scholar 

  • Bonini, N. M., & Giasson, B. I. (2005). Snaring the function of alpha-synuclein. Cell, 123, 359–361.

    CAS  PubMed  Google Scholar 

  • Bove, J., Martinez-Vicente, M., & Vila, M. (2011). Fighting neurodegeneration with rapamycin: Mechanistic insights. Nature Reviews. Neuroscience, 12, 437–452.

    CAS  PubMed  Google Scholar 

  • Burre, J., Sharma, M., Tsetsenis, T., Buchman, V., Etherton, M. R., & Sudhof, T. C. (2010). Alpha-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science, 329, 1663–1667.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Canet-Aviles, R. M., Wilson, M. A., Miller, D. W., Ahmad, R., McLendon, C., Bandyopadhyay, S., Baptista, M. J., Ringe, D., Petsko, G. A., & Cookson, M. R. (2004). The Parkinson’s disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proceedings of the National Academy of Sciences of the United States of America, 101, 9103–9108.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Carmine, B. A., Westerlund, M., Bergman, O., Nissbrandt, H., Lind, C., Sydow, O., & Galter, D. (2007). S18Y in ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) associated with decreased risk of Parkinson’s disease in Sweden. Parkinsonism and Related Disorders, 13, 295–298.

    Google Scholar 

  • Chartier-Harlin, M. C., Kachergus, J., Roumier, C., Mouroux, V., Douay, X., Lincoln, S., Levecque, C., Larvor, L., Andrieux, J., Hulihan, M., Waucquier, N., Defebvre, L., Amouyel, P., Farrer, M., & Destee, A. (2004). Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet, 364, 1167–1169.

    CAS  PubMed  Google Scholar 

  • Chen, L., & Feany, M. B. (2005). Alpha-synuclein phosphorylation controls neurotoxicity and inclusion formation in a Drosophila model of Parkinson disease. Nature Neuroscience, 8, 657–663.

    CAS  PubMed  Google Scholar 

  • Chu, Y., Dodiya, H., Aebischer, P., Olanow, C. W., & Kordower, J. H. (2009). Alterations in lysosomal and proteasomal markers in Parkinson’s disease: Relationship to alpha-synuclein inclusions. Neurobiology of Disease, 35, 385–398.

    CAS  PubMed  Google Scholar 

  • Conway, K. A., Harper, J. D., & Lansbury, P. T., Jr. (2000). Fibrils formed in vitro from alpha-synuclein and two mutant forms linked to Parkinson’s disease are typical amyloid. Biochemistry, 39, 2552–2563.

    CAS  PubMed  Google Scholar 

  • Cooper, A. A., Gitler, A. D., Cashikar, A., Haynes, C. M., Hill, K. J., Bhullar, B., Liu, K., Xu, K., Strathearn, K. E., Liu, F., Cao, S., Caldwell, K. A., Caldwell, G. A., Marsischky, G., Kolodner, R. D., Labaer, J., Rochet, J. C., Bonini, N. M., & Lindquist, S. (2006). Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science, 313, 324–328.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Crews, L., Spencer, B., Desplats, P., Patrick, C., Paulino, A., Rockenstein, E., Hansen, L., Adame, A., Galasko, D., & Masliah, E. (2010). Selective molecular alterations in the autophagy pathway in patients with Lewy body disease and in models of alpha-synucleinopathy. PLoS One, 5, e9313.

    PubMed Central  PubMed  Google Scholar 

  • Cuervo, A. M. (2006). Autophagy in neurons: It is not all about food. Trends in Molecular Medicine, 12, 461–464.

    CAS  PubMed  Google Scholar 

  • Cuervo, A. M., & Dice, J. F. (1996). A receptor for the selective uptake and degradation of proteins by lysosomes. Science, 273, 501–503.

    CAS  PubMed  Google Scholar 

  • Cuervo, A. M., Knecht, E., Terlecky, S. R., & Dice, J. F. (1995). Activation of a selective pathway of lysosomal proteolysis in rat liver by prolonged starvation. American Journal of Physiology, 269, 1200–1208.

    Google Scholar 

  • Cuervo, A. M., Stefanis, L., Fredenburg, R., Lansbury, P. T., & Sulzer, D. (2004). Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science, 305, 1292–1295.

    CAS  PubMed  Google Scholar 

  • Cullen, V., Sardi, S. P., Ng, J., Xu, Y. H., Sun, Y., Tomlinson, J. J., Kolodziej, P., Kahn, I., Saftig, P., Woulfe, J., Rochet, J. C., Glicksman, M. A., Cheng, S. H., Grabowski, G. A., Shihabuddin, L. S., & Schlossmacher, M. G. (2011). Acid beta-glucosidase mutants linked to Gaucher disease, Parkinson disease, and Lewy body dementia alter alpha-synuclein processing. Annals of Neurology, 69, 940–953.

    CAS  PubMed  Google Scholar 

  • Dachsel, J. C., Nishioka, K., Vilarino-Guell, C., Lincoln, S. J., Soto-Ortolaza, A. I., Kachergus, J., Hinkle, K. M., Heckman, M. G., Jasinska-Myga, B., Taylor, J. P., Dickson, D. W., Gibson, R. A., Hentati, F., Ross, O. A., & Farrer, M. J. (2010). Heterodimerization of Lrrk1-Lrrk2: Implications for LRRK2-associated Parkinson disease. Mechanisms of Ageing and Development, 131, 210–214.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dagda, R. K., Cherra, S. J., 3rd, Kulich, S. M., Tandon, A., Park, D., & Chu, C. T. (2009). Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. The Journal of Biological Chemistry, 284, 13843–13855.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dawson, T. M., & Dawson, V. L. (2011). A lysosomal lair for a pathogenic protein pair. Science Translational Medicine, 3(91), 91ps28.

    Google Scholar 

  • Dehay, B., Bove, J., Rodriguez-Muela, N., Perier, C., Recasens, A., Boya, P., & Vila, M. (2010). Pathogenic lysosomal depletion in Parkinson’s disease. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 30, 12535–12544.

    CAS  Google Scholar 

  • Dehay, B., Ramirez, A., Martinez-Vicente, M., Perier, C., Canron, M. H., Doudnikoff, E., Vital, A., Vila, M., Klein, C., & Bezard, E. (2012). Loss of P-type ATPase ATP13A2/PARK9 function induces general lysosomal deficiency and leads to Parkinson disease neurodegeneration. Proceedings of the National Academy of Sciences of the United States of America, 109, 9611–9616.

    CAS  PubMed Central  PubMed  Google Scholar 

  • DePaolo, J., Goker-Alpan, O., Samaddar, T., Lopez, G., & Sidransky, E. (2009). The association between mutations in the lysosomal protein glucocerebrosidase and parkinsonism. Movement Disorders, 24, 1571–1578.

    PubMed Central  PubMed  Google Scholar 

  • Di Fonzo, A., Chien, H. F., Socal, M., Giraudo, S., Tassorelli, C., Iliceto, G., Fabbrini, G., Marconi, R., Fincati, E., Abbruzzese, G., Marini, P., Squitieri, F., Horstink, M. W., Montagna, P., Libera, A. D., Stocchi, F., Goldwurm, S., Ferreira, J. J., Meco, G., Martignoni, E., Lopiano, L., Jardim, L. B., Oostra, B. A., Barbosa, E. R., & Bonifati, V. (2007). ATP13A2 missense mutations in juvenile parkinsonism and young onset Parkinson disease. Neurology, 68, 1557–1562.

    PubMed  Google Scholar 

  • Dice, J. (1990). Peptide sequences that target cytosolic proteins for lysosomal proteolysis. Trends in Biochemical Sciences, 15, 305–309.

    CAS  PubMed  Google Scholar 

  • Dice, J. (2000). Lysosomal pathways of protein degradation. Austin, TX: Landes Bioscience.

    Google Scholar 

  • Ding, W. X., Ni, H. M., Li, M., Liao, Y., Chen, X., Stolz, D. B., Dorn, G. W., & Yin, X. M. (2010). Nix is critical to two distinct phases of mitophagy, reactive oxygen species-mediated autophagy induction and Parkin-ubiquitin-p62-mediated mitochondrial priming. Journal of Biological Chemistry, 285, 27879–27890.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dunn, W. A., Jr., Cregg, J. M., Kiel, J. A., van der Klei, I. J., Oku, M., Sakai, Y., Sibirny, A. A., Stasyk, O. V., & Veenhuis, M. (2005). Pexophagy: The selective autophagy of peroxisomes. Autophagy, 1, 75–83.

    CAS  PubMed  Google Scholar 

  • Dzamko, N., Deak, M., Hentati, F., Reith, A. D., Prescott, A. R., Alessi, D. R., & Nichols, R. J. (2010). Inhibition of LRRK2 kinase activity leads to dephosphorylation of Ser(910)/Ser(935), disruption of 14-3-3 binding and altered cytoplasmic localization. Biochemistry Journal, 430, 405–413.

    CAS  Google Scholar 

  • Elbaz, A., Levecque, C., Clavel, J., Vidal, J. S., Richard, F., Correze, J. R., Delemotte, B., Amouyel, P., Alperovitch, A., Chartier-Harlin, M. C., & Tzourio, C. (2003). S18Y polymorphism in the UCH-L1 gene and Parkinson’s disease: Evidence for an age-dependent relationship. Movement Disorders, 18, 130–137.

    PubMed  Google Scholar 

  • Ferree, A., Guillily, M., Li, H., Smith, K., Takashima, A., Squillace, R., Weigele, M., Collins, J. J., & Wolozin, B. (2011). Regulation of physiologic actions of LRRK2: Focus on autophagy. Neurodegenerative Diseases, 10(1–4), 238–241.

    PubMed Central  PubMed  Google Scholar 

  • Gandhi, P. N., Wang, X., Zhu, X., Chen, S. G., & Wilson-Delfosse, A. L. (2008). The Roc domain of leucine-rich repeat kinase 2 is sufficient for interaction with microtubules. Journal of Neuroscience Research, 86, 1711–1720.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gegg, M. E., Cooper, J. M., Chau, K. Y., Rojo, M., Schapira, A. H., & Taanman, J. W. (2010). Mitofusin 1 and mitofusin 2 are ubiquitinated in a PINK1/parkin-dependent manner upon induction of mitophagy. Human Molecular Genetics, 19, 4861–4870.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gehrke, S., Imai, Y., Sokol, N., & Lu, B. (2010). Pathogenic LRRK2 negatively regulates microRNA-mediated translational repression. Nature, 466, 637–641.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Geisler, S., Holmstrom, K. M., Skujat, D., Fiesel, F. C., Rothfuss, O. C., Kahle, P. J., & Springer, W. (2010). PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nature Cell Biology, 12, 119–131.

    CAS  PubMed  Google Scholar 

  • Gillardon, F. (2009a). Interaction of elongation factor 1-alpha with leucine-rich repeat kinase 2 impairs kinase activity and microtubule bundling in vitro. Neuroscience, 163, 533–539.

    CAS  PubMed  Google Scholar 

  • Gillardon, F. (2009b). Leucine-rich repeat kinase 2 phosphorylates brain tubulin-beta isoforms and modulates microtubule stability – a point of convergence in parkinsonian neurodegeneration? Journal of Neurochemistry, 110, 1514–1522.

    CAS  PubMed  Google Scholar 

  • Gloeckner, C. J., Kinkl, N., Schumacher, A., Braun, R. J., O’Neill, E., Meitinger, T., Kolch, W., Prokisch, H., & Ueffing, M. (2006). The Parkinson disease causing LRRK2 mutation I2020T is associated with increased kinase activity. Human Molecular Genetics, 15, 223–232.

    CAS  PubMed  Google Scholar 

  • Gomez-Suaga, P., Luzon-Toro, B., Churamani, D., Zhang, L., Bloor-Young, D., Patel, S., Woodman, P. G., Churchill, G. C., & Hilfiker, S. (2012). Leucine-rich repeat kinase 2 regulates autophagy through a calcium-dependent pathway involving NAADP. Human Molecular Genetics, 21, 511–525.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Greggio, E., & Cookson, M. R. (2009). Leucine-rich repeat kinase 2 mutations and Parkinson’s disease: Three questions. ASN Neuro, 1. doi:pii: e00002. 10.1042/AN20090007. Review.

    Google Scholar 

  • Greggio, E., Jain, S., Kingsbury, A., Bandopadhyay, R., Lewis, P., Kaganovich, A., van der Brug, M. P., Beilina, A., Blackinton, J., Thomas, K. J., Ahmad, R., Miller, D. W., Kesavapany, S., Singleton, A., Lees, A., Harvey, R. J., Harvey, K., & Cookson, M. R. (2006). Kinase activity is required for the toxic effects of mutant LRRK2/dardarin. Neurobiology of Disease, 23, 329–341.

    CAS  PubMed  Google Scholar 

  • Greggio, E., Zambrano, I., Kaganovich, A., Beilina, A., Taymans, J. M., Daniels, V., Lewis, P., Jain, S., Ding, J., Syed, A., Thomas, K. J., Baekelandt, V., & Cookson, M. R. (2008). The Parkinson disease-associated leucine-rich repeat kinase 2 (LRRK2) is a dimer that undergoes intramolecular autophosphorylation. The Journal of Biological Chemistry, 283, 16906–16914.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gusdon, A. M., Zhu, J., Van Houten, B., & Chu, C. T. (2012). ATP13A2 regulates mitochondrial bioenergetics through macroautophagy. Neurobiology of Disease, 45, 962–972.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hara, T., Nakamura, K., Matsui, M., Yamamoto, A., Nakahara, Y., Suzuki-Migishima, R., Yokoyama, M., Mishima, K., Saito, I., Okano, H., & Mizushima, N. (2006). Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature, 441, 885–889.

    CAS  PubMed  Google Scholar 

  • He, C., & Klionsky, D. J. (2006). Autophagy and neurodegeneration. ACS Chemical Biology, 1, 211–213.

    CAS  PubMed  Google Scholar 

  • He, C., & Klionsky, D. J. (2009). Regulation mechanisms and signaling pathways of autophagy. Annual Review of Genetics, 43, 67–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ho, C. C., Rideout, H. J., Ribe, E., Troy, C. M., & Dauer, W. T. (2009). The Parkinson disease protein leucine-rich repeat kinase 2 transduces death signals via Fas-associated protein with death domain and caspase-8 in a cellular model of neurodegeneration. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 29, 1011–1016.

    CAS  Google Scholar 

  • Ibanez, P., Bonnet, A. M., Debarges, B., Lohmann, E., Tison, F., Pollak, P., Agid, Y., Durr, A., & Brice, A. (2004). Causal relation between alpha-synuclein gene duplication and familial Parkinson’s disease. Lancet, 364, 1169–1171.

    CAS  PubMed  Google Scholar 

  • Imai, J., Yashiroda, H., Maruya, M., Yahara, I., & Tanaka, K. (2003). Proteasomes and molecular chaperones: Cellular machinery responsible for folding and destruction of unfolded proteins. Cell Cycle, 2, 585–590.

    CAS  PubMed  Google Scholar 

  • Imai, Y., Gehrke, S., Wang, H. Q., Takahashi, R., Hasegawa, K., Oota, E., & Lu, B. (2008). Phosphorylation of 4E-BP by LRRK2 affects the maintenance of dopaminergic neurons in Drosophila. The EMBO Journal, 27, 2432–2443.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Irrcher, I., Aleyasin, H., Seifert, E. L., Hewitt, S. J., Chhabra, S., Phillips, M., Lutz, A. K., Rousseaux, M. W., Bevilacqua, L., Jahani-Asl, A., Callaghan, S., MacLaurin, J. G., Winklhofer, K. F., Rizzu, P., Rippstein, P., Kim, R. H., Chen, C. X., Fon, E. A., Slack, R. S., Harper, M. E., McBride, H. M., Mak, T. W., & Park, D. S. (2010). Loss of the Parkinson’s disease-linked gene DJ-1 perturbs mitochondrial dynamics. Human Molecular Genetics, 19, 3734–3746.

    CAS  PubMed  Google Scholar 

  • Junn, E., Jang, W. H., Zhao, X., Jeong, B. S., & Mouradian, M. M. (2009). Mitochondrial localization of DJ-1 leads to enhanced neuroprotection. Journal of Neuroscience Research, 87, 123–129.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kabuta, T., Setsuie, R., Mitsui, T., Kinugawa, A., Sakurai, M., Aoki, S., Uchida, K., & Wada, K. (2008). Aberrant molecular properties shared by familial Parkinson’s disease-associated mutant UCH-L1 and carbonyl-modified UCH-L1. Human Molecular Genetics, 17, 1482–1496.

    CAS  PubMed  Google Scholar 

  • Kaushik, S., Massey, A. C., Mizushima, N., & Cuervo, A. M. (2008). Constitutive activation of chaperone-mediated autophagy in cells with impaired macroautophagy. Molecular Biology of the Cell, 19, 2179–2192.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kegel, K. B., Kim, M., Sapp, E., McIntyre, C., Castano, J. G., Aronin, N., & DiFiglia, M. (2000). Huntingtin expression stimulates endosomal-lysosomal activity, endosome tubulation, and autophagy. Journal of Neuroscience, 20, 7268–7278.

    CAS  PubMed  Google Scholar 

  • Kiffin, R., Christian, C., Knecht, E., & Cuervo, A. M. (2004). Activation of chaperone-mediated autophagy during oxidative stress. Molecular Biology of the Cell, 15, 4829–4840.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim, R. H., Smith, P. D., Aleyasin, H., Hayley, S., Mount, M. P., Pownall, S., Wakeham, A., You, T., Kalia, S. K., Horne, P., Westaway, D., Lozano, A. M., Anisman, H., Park, D. S., & Mak, T. W. (2005). Hypersensitivity of DJ-1-deficient mice to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine (MPTP) and oxidative stress. Proceedings of the National Academy of Sciences of the United States of America, 102, 5215–5220.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim, I., Rodriguez-Enriquez, S., & Lemasters, J. J. (2007). Selective degradation of mitochondria by mitophagy. Archives of Biochemistry and Biophysics, 462, 245–253.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klionsky, D. J. (2005). The molecular machinery of autophagy: Unanswered questions. Journal of Cell Science, 118, 7–18.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Komatsu, M., Waguri, S., Chiba, T., Murata, S., Iwata, J., Tanida, I., Ueno, T., Koike, M., Uchiyama, Y., Kominami, E., & Tanaka, K. (2006). Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature, 441, 880–884.

    CAS  PubMed  Google Scholar 

  • Kraft, C., Deplazes, A., Sohrmann, M., & Peter, M. (2008). Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nature Cell Biology, 10, 602–610.

    CAS  PubMed  Google Scholar 

  • Krebiehl, G., Ruckerbauer, S., Burbulla, L. F., Kieper, N., Maurer, B., Waak, J., Wolburg, H., Gizatullina, Z., Gellerich, F. N., Woitalla, D., Riess, O., Kahle, P. J., Proikas-Cezanne, T., & Kruger, R. (2010). Reduced basal autophagy and impaired mitochondrial dynamics due to loss of Parkinson’s disease-associated protein DJ-1. PLoS One, 5, e9367.

    PubMed Central  PubMed  Google Scholar 

  • Kruger, R., Kuhn, W., Muller, T., Woitalla, D., Graeber, M., Kosel, S., Przuntek, H., Epplen, J. T., Schols, L., & Riess, O. (1998). Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nature Genetics, 18, 106–108.

    CAS  PubMed  Google Scholar 

  • Kyratzi, E., Pavlaki, M., & Stefanis, L. (2008). The S18Y polymorphic variant of UCH-L1 confers an antioxidant function to neuronal cells. Human Molecular Genetics, 17, 2160–2171.

    CAS  PubMed  Google Scholar 

  • Lee, J. Y., Koga, H., Kawaguchi, Y., Tang, W., Wong, E., Gao, Y. S., Pandey, U. B., Kaushik, S., Tresse, E., Lu, J., Taylor, J. P., Cuervo, A. M., & Yao, T. P. (2010a). HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. The EMBO Journal, 29, 969–980.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee, J. Y., Nagano, Y., Taylor, J. P., Lim, K. L., & Yao, T. P. (2010b). Disease-causing mutations in parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy. The Journal of Cell Biology, 189, 671–679.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Levine, B. (2005). Eating oneself and uninvited guests: Autophagy-related pathways in cellular defense. Cell, 120, 159–162.

    CAS  PubMed  Google Scholar 

  • Levine, B., & Kroemer, G. (2008). Autophagy in the pathogenesis of disease. Cell, 132, 27–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ling, D., & Salvaterra, P. M. (2009). A central role for autophagy in Alzheimer-type neurodegeneration. Autophagy, 5, 738–740.

    CAS  PubMed  Google Scholar 

  • MacLeod, D., Dowman, J., Hammond, R., Leete, T., Inoue, K., & Abeliovich, A. (2006). The familial Parkinsonism gene LRRK2 regulates neurite process morphology. Neuron, 52, 587–593.

    CAS  PubMed  Google Scholar 

  • Majeski, A. E., & Dice, J. F. (2004). Mechanisms of chaperone-mediated autophagy. The International Journal of Biochemistry & Cell Biology, 36, 2435–2444.

    CAS  Google Scholar 

  • Martinez-Vicente, M., & Cuervo, A. M. (2007). Autophagy and neurodegeneration: When the cleaning crew goes on strike. Lancet Neurology, 6, 352–361.

    CAS  PubMed  Google Scholar 

  • Martinez-Vicente, M., Talloczy, Z., Kaushik, S., Massey, A. C., Mazzulli, J., Mosharov, E. V., Hodara, R., Fredenburg, R., Wu, D. C., Follenzi, A., Dauer, W., Przedborski, S., Ischiropoulos, H., Lansbury, P. T., Sulzer, D., & Cuervo, A. M. (2008). Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy. The Journal of Clinical Investigation, 118, 777–788.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marzella, L., Ahlberg, J., & Glaumann, H. (1982). Isolation of autophagic vacuoles from rat liver: Morphological and biochemical characterization. The Journal of Cell Biology, 93, 144–154.

    CAS  PubMed  Google Scholar 

  • Massey, A., Kiffin, R., & Cuervo, A. M. (2004). Pathophysiology of chaperone-mediated autophagy. The International Journal of Biochemistry & Cell Biology, 36, 2420–2434.

    CAS  Google Scholar 

  • Massey, A. C., Kaushik, S., & Cuervo, A. M. (2006a). Lysosomal chat maintains the balance. Autophagy, 2, 325–327.

    CAS  PubMed  Google Scholar 

  • Massey, A. C., Kaushik, S., Sovak, G., Kiffin, R., & Cuervo, A. M. (2006b). Consequences of the selective blockage of chaperone-mediated autophagy. Proceedings of the National Academy of Sciences of the United States of America, 103, 5805–5810.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Matsuda, N., Sato, S., Shiba, K., Okatsu, K., Saisho, K., Gautier, C. A., Sou, Y. S., Saiki, S., Kawajiri, S., Sato, F., Kimura, M., Komatsu, M., Hattori, N., & Tanaka, K. (2010). PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. The Journal of Cell Biology, 189, 211–221.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mazzulli, J. R., Xu, Y. H., Sun, Y., Knight, A. L., McLean, P. J., Caldwell, G. A., et al. (2011). Gaucher disease glucocerebrosidase and alpha-synuclein form a bidirectional pathogenic loop in synucleinopathies. Cell, 146(1), 37–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  • McFarlane, D., Dybdal, N., Donaldson, M. T., Miller, L., & Cribb, A. E. (2005). Nitration and increased alpha-synuclein expression associated with dopaminergic neurodegeneration in equine pituitary pars intermedia dysfunction. Journal of Neuroendocrinology, 17, 73–80.

    CAS  PubMed  Google Scholar 

  • Meulener, M., Whitworth, A. J., Armstrong-Gold, C. E., Rizzu, P., Heutink, P., Wes, P. D., Pallanck, L. J., & Bonini, N. M. (2005). Drosophila DJ-1 mutants are selectively sensitive to environmental toxins associated with Parkinson’s disease. Current Biology, 15, 1572–1577.

    CAS  PubMed  Google Scholar 

  • Mizushima, N., Levine, B., Cuervo, A. M., & Klionsky, D. J. (2008). Autophagy fights disease through cellular self-digestion. Nature, 451, 1069–1075.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morimoto, N., Nagai, M., Ohta, Y., Miyazaki, K., Kurata, T., Morimoto, M., Murakami, T., Takehisa, Y., Ikeda, Y., Kamiya, T., & Abe, K. (2007). Increased autophagy in transgenic mice with a G93A mutant SOD1 gene. Brain Research, 1167, 112–117.

    CAS  PubMed  Google Scholar 

  • Mortimore, G., Lardeux, B. R., & Adams, C. E. (1988). Regulation of microautophagy and basal protein turnover in rat liver. Effects of short-term starvation. Journal of Biological Chemistry, 263, 2506–2512.

    CAS  PubMed  Google Scholar 

  • Mullins, C., & Bonifacino, J. S. (2001). The molecular machinery for lysosome biogenesis. BioEssays, 23, 333–343.

    CAS  PubMed  Google Scholar 

  • Nagata, E., Sawa, A., Ross, C. A., & Snyder, S. H. (2004). Autophagosome-like vacuole formation in Huntington’s disease lymphoblasts. NeuroReport, 15, 1325–1328.

    PubMed  Google Scholar 

  • Narendra, D., Tanaka, A., Suen, D. F., & Youle, R. J. (2008). Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. The Journal of Cell Biology, 183, 795–803.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Narendra, D., Kane, L. A., Hauser, D. N., Fearnley, I. M., & Youle, R. J. (2010a). p62/SQSTM1 is required for Parkin-induced mitochondrial clustering but not mitophagy; VDAC1 is dispensable for both. Autophagy, 6, 1090–1106.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Narendra, D. P., Jin, S. M., Tanaka, A., Suen, D. F., Gautier, C. A., Shen, J., Cookson, M. R., & Youle, R. J. (2010b). PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biology, 8, e1000298.

    PubMed Central  PubMed  Google Scholar 

  • Nedelsky, N. B., Todd, P. K., & Taylor, J. P. (2008). Autophagy and the ubiquitin-proteasome system: Collaborators in neuroprotection. Biochimica et Biophysica Acta, 1782, 691–699.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Neumann, J., Bras, J., Deas, E., O’Sullivan, S. S., Parkkinen, L., Lachmann, R. H., Li, A., Holton, J., Guerreiro, R., Paudel, R., Segarane, B., Singleton, A., Lees, A., Hardy, J., Houlden, H., Revesz, T., & Wood, N. W. (2009). Glucocerebrosidase mutations in clinical and pathologically proven Parkinson’s disease. Brain, 132, 1783–1794.

    PubMed Central  PubMed  Google Scholar 

  • Nixon, R. A., Wegiel, J., Kumar, A., Yu, W. H., Peterhoff, C., Cataldo, A., & Cuervo, A. M. (2005). Extensive involvement of autophagy in Alzheimer disease: An immuno-electron microscopy study. Journal of Neuropathology and Experimental Neurology, 64, 113–122.

    PubMed  Google Scholar 

  • Norris, E. H., Giasson, B. I., Hodara, R., Xu, S., Trojanowski, J. Q., Ischiropoulos, H., & Lee, V. M. (2005). Reversible inhibition of {alpha}-synuclein fibrillization by dopaminochrome-mediated conformational alterations. The Journal of Biological Chemistry, 280, 21212–21219.

    CAS  PubMed  Google Scholar 

  • Okatsu, K., Saisho, K., Shimanuki, M., Nakada, K., Shitara, H., Sou, Y. S., Kimura, M., Sato, S., Hattori, N., Komatsu, M., Tanaka, K., & Matsuda, N. (2010). p62/SQSTM1 cooperates with Parkin for perinuclear clustering of depolarized mitochondria. Genes to Cells, 15, 887–900.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paisan-Ruiz, C., Jain, S., Evans, E. W., Gilks, W. P., Simon, J., van der Brug, M., Lopez de Munain, A., Aparicio, S., Gil, A. M., Khan, N., Johnson, J., Martinez, J. R., Nicholl, D., Carrera, I. M., Pena, A. S., de Silva, R., Lees, A., Marti-Masso, J. F., Perez-Tur, J., Wood, N. W., & Singleton, A. B. (2004). Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron, 44, 595–600.

    CAS  PubMed  Google Scholar 

  • Paisan-Ruiz, C., Nath, P., Washecka, N., Gibbs, J. R., & Singleton, A. B. (2008). Comprehensive analysis of LRRK2 in publicly available Parkinson’s disease cases and neurologically normal controls. Human Mutation, 29, 485–490.

    CAS  PubMed  Google Scholar 

  • Pan, T., Kondo, S., Le, W., & Jankovic, J. (2008a). The role of autophagy-lysosome pathway in neurodegeneration associated with Parkinson’s disease. Brain, 131, 1969–1978.

    PubMed  Google Scholar 

  • Pan, T., Kondo, S., Zhu, W., Xie, W., Jankovic, J., & Le, W. (2008b). Neuroprotection of rapamycin in lactacystin-induced neurodegeneration via autophagy enhancement. Neurobiology of Disease, 32, 16–25.

    CAS  PubMed  Google Scholar 

  • Pandey, U. B., Nie, Z., Batlevi, Y., McCray, B. A., Ritson, G. P., Nedelsky, N. B., Schwartz, S. L., DiProspero, N. A., Knight, M. A., Schuldiner, O., Padmanabhan, R., Hild, M., Berry, D. L., Garza, D., Hubbert, C. C., Yao, T. P., Baehrecke, E. H., & Taylor, J. P. (2007). HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature, 447, 859–863.

    CAS  PubMed  Google Scholar 

  • Pankiv, S., Clausen, T. H., Lamark, T., Brech, A., Bruun, J. A., Outzen, H., Overvatn, A., Bjorkoy, G., & Johansen, T. (2007). p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. The Journal of Biological Chemistry, 282, 24131–24145.

    CAS  PubMed  Google Scholar 

  • Parisiadou, L., Xie, C., Cho, H. J., Lin, X., Gu, X. L., Long, C. X., Lobbestael, E., Baekelandt, V., Taymans, J. M., Sun, L., & Cai, H. (2009). Phosphorylation of ezrin/radixin/moesin proteins by LRRK2 promotes the rearrangement of actin cytoskeleton in neuronal morphogenesis. Journal of Neuroscience, 29, 13971–13980.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paxinou, E., Chen, Q., Weisse, M., Giasson, B. I., Norris, E. H., Rueter, S. M., Trojanowski, J. Q., Lee, V. M., & Ischiropoulos, H. (2001). Induction of alpha-synuclein aggregation by intracellular nitrative insult. Journal of Neuroscience, 21, 8053–8061.

    CAS  PubMed  Google Scholar 

  • Petersen, A., Larsen, K. E., Behr, G. G., Romero, N., Przedborski, S., Brundin, P., & Sulzer, D. (2001). Expanded CAG repeats in exon 1 of the Huntington’s disease gene stimulate dopamine-mediated striatal neuron autophagy and degeneration. Human Molecular Genetics, 10, 1243–1254.

    CAS  PubMed  Google Scholar 

  • Pickford, F., Masliah, E., Britschgi, M., Lucin, K., Narasimhan, R., Jaeger, P. A., Small, S., Spencer, B., Rockenstein, E., Levine, B., & Wyss-Coray, T. (2008). The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid beta accumulation in mice. The Journal of Clinical Investigation, 118, 2190–2199.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Plowey, E. D., Cherra, S. J., 3rd, Liu, Y. J., & Chu, C. T. (2008). Role of autophagy in G2019S-LRRK2-associated neurite shortening in differentiated SH-SY5Y cells. Journal of Neurochemistry, 105, 1048–1056.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Polymeropoulos, M. H., Lavedan, C., Leroy, E., Ide, S. E., Dehejia, A., Dutra, A., Pike, B., Root, H., Rubenstein, J., Boyer, R., Stenroos, E. S., Chandrasekharappa, S., Athanassiadou, A., Papapetropoulos, T., Johnson, W. G., Lazzarini, A. M., Duvoisin, R. C., Di Iorio, G., Golbe, L. I., & Nussbaum, R. L. (1997). Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science, 276, 2045–2047.

    CAS  PubMed  Google Scholar 

  • Ramonet, D., Daher, J. P., Lin, B. M., Stafa, K., Kim, J., Banerjee, R., Westerlund, M., Pletnikova, O., Glauser, L., Yang, L., Liu, Y., Swing, D. A., Beal, M. F., Troncoso, J. C., McCaffery, J. M., Jenkins, N. A., Copeland, N. G., Galter, D., Thomas, B., Lee, M. K., Dawson, T. M., Dawson, V. L., & Moore, D. J. (2011). Dopaminergic neuronal loss, reduced neurite complexity and autophagic abnormalities in transgenic mice expressing G2019S mutant LRRK2. PLoS One, 6, e18568.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ramonet, D., Podhajska, A., Stafa, K., Sonnay, S., Trancikova, A., Tsika, E., Pletnikova, O., Troncoso, J. C., Glauser, L., & Moore, D. J. (2012). PARK9-associated ATP13A2 localizes to intracellular acidic vesicles and regulates cation homeostasis and neuronal integrity. Human Molecular Genetics, 21(8), 1725–1743.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ravikumar, B., Vacher, C., Berger, Z., Davies, J. E., Luo, S., Oroz, L. G., Scaravilli, F., Easton, D. F., Duden, R., O’Kane, C. J., & Rubinsztein, D. C. (2004). Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nature Genetics, 36, 585–595.

    CAS  PubMed  Google Scholar 

  • Ravikumar, B., Sarkar, S., Davies, J. E., Futter, M., Garcia-Arencibia, M., Green-Thompson, Z. W., Jimenez-Sanchez, M., Korolchuk, V. I., Lichtenberg, M., Luo, S., Massey, D. C., Menzies, F. M., Moreau, K., Narayanan, U., Renna, M., Siddiqi, F. H., Underwood, B. R., Winslow, A. R., & Rubinsztein, D. C. (2010). Regulation of mammalian autophagy in physiology and pathophysiology. Physiological Reviews, 90, 1383–1435.

    CAS  PubMed  Google Scholar 

  • Rochet, J. C., Outeiro, T. F., Conway, K. A., Ding, T. T., Volles, M. J., Lashuel, H. A., Bieganski, R. M., Lindquist, S. L., & Lansbury, P. T. (2004). Interactions among alpha-synuclein, dopamine, and biomembranes: Some clues for understanding neurodegeneration in Parkinson’s disease. Journal of Molecular Neuroscience, 23, 23–34.

    CAS  PubMed  Google Scholar 

  • Sakaguchi-Nakashima, A., Meir, J. Y., Jin, Y., Matsumoto, K., & Hisamoto, N. (2007). LRK-1, a C. elegans PARK8-related kinase, regulates axonal-dendritic polarity of SV proteins. Current Biology, 17, 592–598.

    CAS  PubMed  Google Scholar 

  • Sakai, Y., Koller, A., Rangell, L., Keller, G., & Subramani, S. (1998). Peroxisome degradation by microautophagy in Pichia pastoris. Identification of specific steps and morphological intermediates. The Journal of Cell Biology, 141, 625–636.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sanchez-Danes, A., Richaud-Patin, Y., Carballo-Carbajal, I., Jimenez-Delgado, S., Caig, C., Mora, S., Di Guglielmo, C., Ezquerra, M., Patel, B., Giralt, A., Canals, J. M., Memo, M., Alberch, J., Lopez-Barneo, J., Vila, M., Cuervo, A. M., Tolosa, E., Consiglio, A., & Raya, A. (2012). Disease-specific phenotypes in dopamine neurons from human iPS-based models of genetic and sporadic Parkinson’s disease. EMBO Molecular Medicine., 4, 380.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Santini, E., Heiman, M., Greengard, P., Valjent, E., & Fisone, G. (2009). Inhibition of mTOR signaling in Parkinson’s disease prevents L-DOPA-induced dyskinesia. Science Signaling, 2, ra36. doi:10.1126/scisignal.2000308.

    PubMed  Google Scholar 

  • Sapp, E., Schwarz, C., Chase, K., Bhide, P. G., Young, A. B., Penney, J., Vonsattel, J. P., Aronin, N., & DiFiglia, M. (1997). Huntingtin localization in brains of normal and Huntington’s disease patients. Annals of Neurology, 42, 604–612.

    CAS  PubMed  Google Scholar 

  • Sardi, S. P., Clarke, J., Kinnecom, C., Tamsett, T. J., Li, L., Stanek, L. M., et al. (2011). CNS expression of glucocerebrosidase corrects alpha-synuclein pathology and memory in a mouse model of Gaucher-related synucleinopathy. Proceedings of the National Academy of Sciences of the United States of America, 108(29), 12101–12106.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Satoh, J., & Kuroda, Y. (2001). A polymorphic variation of serine to tyrosine at codon 18 in the ubiquitin C-terminal hydrolase-L1 gene is associated with a reduced risk of sporadic Parkinson’s disease in a Japanese population. Journal of Neurological Sciences, 189, 113–117.

    CAS  Google Scholar 

  • Shin, N., Jeong, H., Kwon, J., Heo, H. Y., Kwon, J. J., Yun, H. J., Kim, C. H., Han, B. S., Tong, Y., Shen, J., Hatano, T., Hattori, N., Kim, K. S., Chang, S., & Seol, W. (2008). LRRK2 regulates synaptic vesicle endocytosis. Experimental Cell Research, 314, 2055–2065.

    CAS  PubMed  Google Scholar 

  • Singh, R., Xiang, Y., Wang, Y., Baikati, K., Cuervo, A. M., Luu, Y. K., Tang, Y., Pessin, J. E., Schwartz, G. J., & Czaja, M. J. (2009). Autophagy regulates adipose mass and differentiation in mice. The Journal of Clinical Investigation, 119, 3329–3339.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Singleton, A. B., Farrer, M., Johnson, J., Singleton, A., Hague, S., Kachergus, J., Hulihan, M., Peuralinna, T., Dutra, A., Nussbaum, R., Lincoln, S., Crawley, A., Hanson, M., Maraganore, D., Adler, C., Cookson, M. R., Muenter, M., Baptista, M., Miller, D., Blancato, J., Hardy, J., & Gwinn-Hardy, K. (2003). Alpha-synuclein locus triplication causes Parkinson’s disease. Science, 302, 841.

    CAS  PubMed  Google Scholar 

  • Smith, W. W., Margolis, R. L., Li, X., Troncoso, J. C., Lee, M. K., Dawson, V. L., Dawson, T. M., Iwatsubo, T., & Ross, C. A. (2005). Alpha-synuclein phosphorylation enhances eosinophilic cytoplasmic inclusion formation in SH-SY5Y cells. Journal of Neuroscience, 25, 5544–5552.

    CAS  PubMed  Google Scholar 

  • Smith, W. W., Pei, Z., Jiang, H., Dawson, V. L., Dawson, T. M., & Ross, C. A. (2006). Kinase activity of mutant LRRK2 mediates neuronal toxicity. Nature Neuroscience, 9, 1231–1233.

    CAS  PubMed  Google Scholar 

  • Stefanis, L., Larsen, K. E., Rideout, H. J., Sulzer, D., & Greene, L. A. (2001). Expression of A53T mutant but not wild-type alpha-synuclein in PC12 cells induces alterations of the ubiquitin-dependent degradation system, loss of dopamine release, and autophagic cell death. Journal of Neuroscience, 21, 9549–9560.

    CAS  PubMed  Google Scholar 

  • Sun, Y., Liou, B., Ran, H., Skelton, M. R., Williams, M. T., Vorhees, C. V., Kitatani, K., Hannun, Y. A., Witte, D. P., Xu, Y. H., & Grabowski, G. A. (2010). Neuronopathic Gaucher disease in the mouse: Viable combined selective saposin C deficiency and mutant glucocerebrosidase (V394L) mice with glucosylsphingosine and glucosylceramide accumulation and progressive neurological deficits. Human Molecular Genetics, 19, 1088–1097.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Taira, T., Saito, Y., Niki, T., Iguchi-Ariga, S. M., Takahashi, K., & Ariga, H. (2004). DJ-1 has a role in antioxidative stress to prevent cell death. EMBO Reports, 5, 213–218.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tanaka, K., Matsuda, N., & Okatsu, K. (2010). Mechanisms underlying the cause of Parkinson’s disease: The functions of Parkin/PINK1. Rinshō Shinkeigaku, 50, 867.

    PubMed  Google Scholar 

  • Thomas, K. J., McCoy, M. K., Blackinton, J., Beilina, A., van der Brug, M., Sandebring, A., Miller, D., Maric, D., Cedazo-Minguez, A., & Cookson, M. R. (2011). DJ-1 acts in parallel to the PINK1/parkin pathway to control mitochondrial function and autophagy. Human Molecular Genetics, 20, 40–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tong, Y., Yamaguchi, H., Giaime, E., Boyle, S., Kopan, R., Kelleher, R. J., III, & Shen, J. (2010). Loss of leucine-rich repeat kinase 2 causes impairment of protein degradation pathways, accumulation of alpha-synuclein, and apoptotic cell death in aged mice. Proceedings of the National Academy of Sciences of the United States of America, 107, 9879–9884.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tong, Y., Giaime, E., Yamaguchi, H., Ichimura, T., Liu, Y., Si, H., Cai, H., Bonventre, J. V., & Shen, J. (2012). Loss of leucine-rich repeat kinase 2 causes age-dependent bi-phasic alterations of the autophagy pathway. Molecular Neurodegeneration, 7, 2.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Usenovic, M., Knight, A. L., Ray, A., Wong, V., Brown, K. R., Caldwell, G. A., Caldwell, K. A., Stagljar, I., & Krainc, D. (2012a). Identification of novel ATP13A2 interactors and their role in alpha-synuclein misfolding and toxicity. Human Molecular Genetics, 21(17), 3785–3794.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Usenovic, M., Tresse, E., Mazzulli, J. R., Taylor, J. P., & Krainc, D. (2012b). Deficiency of ATP13A2 leads to lysosomal dysfunction, alpha-synuclein accumulation, and neurotoxicity. Journal of Neuroscience, 32, 4240.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Uversky, V. N., Yamin, G., Munishkina, L. A., Karymov, M. A., Millett, I. S., Doniach, S., Lyubchenko, Y. L., & Fink, A. L. (2005). Effects of nitration on the structure and aggregation of alpha-synuclein. Brain Research. Molecular Brain Research, 134, 84–102.

    CAS  PubMed  Google Scholar 

  • Vila, M., Bove, J., Dehay, B., Rodriguez-Muela, N., & Boya, P. (2011). Lysosomal membrane permeabilization in Parkinson disease. Autophagy, 7, 98–100.

    PubMed  Google Scholar 

  • Vitner, E. B., Dekel, H., Zigdon, H., Shachar, T., Farfel-Becker, T., Eilam, R., Karlsson, S., & Futerman, A. H. (2010). Altered expression and distribution of cathepsins in neuronopathic forms of Gaucher disease and in other sphingolipidoses. Human Molecular Genetics, 19, 3583–3590.

    CAS  PubMed  Google Scholar 

  • Vives-Bauza, C., Zhou, C., Huang, Y., Cui, M., de Vries, R.L., Kim, J., May, J., Tocilescu, M. A., Liu, W., Ko, H. S., Magrane, J., Moore, D. J., Dawson, V. L., Grailhe, R., Dawson, T. M., Li, C., Tieu, K., & Przedborski, S. (2009). PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proceedings of the National Academy of Sciences of the United States of America.

    Google Scholar 

  • Vives-Bauza, C., Zhou, C., Huang, Y., Cui, M., de Vries, R. L., Kim, J., et al. (2010). PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proceedings of the National Academy of Sciences of the United States of America, 107(1), 378–383.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vogiatzi, T., Xilouri, M., Vekrellis, K., & Stefanis, L. (2008). Wild type alpha-synuclein is degraded by chaperone-mediated autophagy and macroautophagy in neuronal cells. The Journal of Biological Chemistry, 283, 23542–23556.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Voisine, C., Pedersen, J. S., & Morimoto, R. I. (2010). Chaperone networks: Tipping the balance in protein folding diseases. Neurobiology of Disease, 40, 12–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Volles, M. J., & Lansbury, P. T., Jr. (2003). Zeroing in on the pathogenic form of alpha-synuclein and its mechanism of neurotoxicity in Parkinson’s disease. Biochemistry, 42, 7871–7878.

    CAS  PubMed  Google Scholar 

  • Wang, C. W., & Klionsky, D. J. (2003). The molecular mechanism of autophagy. Molecular Medicine, 9, 65–76.

    PubMed Central  PubMed  Google Scholar 

  • Wang, L., Xie, C., Greggio, E., Parisiadou, L., Shim, H., Sun, L., Chandran, J., Lin, X., Lai, C., Yang, W. J., Moore, D. J., Dawson, T. M., Dawson, V. L., Chiosis, G., Cookson, M. R., & Cai, H. (2008). The chaperone activity of heat shock protein 90 is critical for maintaining the stability of leucine-rich repeat kinase 2. Journal of Neuroscience, 28, 3384–3391.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Webb, J. L., Ravikumar, B., Atkins, J., Skepper, J. N., & Rubinsztein, D. C. (2003). Alpha-synuclein is degraded by both autophagy and the proteasome. The Journal of Biological Chemistry, 278, 25009–25013.

    CAS  PubMed  Google Scholar 

  • West, A. B., Moore, D. J., Biskup, S., Bugayenko, A., Smith, W. W., Ross, C. A., Dawson, V. L., & Dawson, T. M. (2005). Parkinson’s disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proceedings of the National Academy of Sciences of the United States of America, 102, 16842–16847.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Westbroek, W., Gustafson, A. M., & Sidransky, E. (2011). Exploring the link between glucocerebrosidase mutations and parkinsonism. Trends in Molecular Medicine, 17, 485–493.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Whitworth, A. J., & Pallanck, L. J. (2009). The PINK1/Parkin pathway: A mitochondrial quality control system? Journal of Bioenergetics and Biomembranes, 41, 499.

    Google Scholar 

  • Winslow, A. R., Chen, C. W., Corrochano, S., Acevedo-Arozena, A., Gordon, D. E., Peden, A. A., Lichtenberg, M., Menzies, F. M., Ravikumar, B., Imarisio, S., Brown, S., O’Kane, C. J., & Rubinsztein, D. C. (2010). Alpha-synuclein impairs macroautophagy: Implications for Parkinson’s disease. The Journal of Cell Biology, 190, 1023–1037.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wong, E., & Cuervo, A. M. (2010). Autophagy gone awry in neurodegenerative diseases. Nature Neuroscience, 13, 805–811.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xilouri, M., Vogiatzi, T., Vekrellis, K., Park, D., & Stefanis, L. (2009). Abberant alpha-synuclein confers toxicity to neurons in part through inhibition of chaperone-mediated autophagy. PLoS One, 4, e5515.

    PubMed Central  PubMed  Google Scholar 

  • Xilouri, M., Kyratzi, E., Pitychoutis, P. M., Papadopoulou-Daifoti, Z., Perier, C., Vila, M., Maniati, M., Ulusoy, A., Kirik, D., Park, D. S., Wada, K., & Stefanis, L. (2012). Selective neuroprotective effects of the S18Y polymorphic variant of UCH-L1 in the dopaminergic system. Human Molecular Genetics, 21, 874–889.

    CAS  PubMed  Google Scholar 

  • Yang, Q., She, H., Gearing, M., Colla, E., Lee, M., Shacka, J. J., & Mao, Z. (2009). Regulation of neuronal survival factor MEF2D by chaperone-mediated autophagy. Science, 323, 124–127.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zarranz, J. J., Alegre, J., Gomez-Esteban, J. C., Lezcano, E., Ros, R., Ampuero, I., Vidal, L., Hoenicka, J., Rodriguez, O., Atares, B., Llorens, V., Gomez Tortosa, E., del Ser, T., Munoz, D. G., & de Yebenes, J. G. (2004). The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Annals of Neurology, 55, 164–173.

    CAS  PubMed  Google Scholar 

  • Zhu, J. H., Guo, F., Shelburne, J., Watkins, S., & Chu, C. T. (2003). Localization of phosphorylated ERK/MAP kinases to mitochondria and autophagosomes in Lewy body diseases. Brain Pathology, 13, 473–481.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zimprich, A., Biskup, S., Leitner, P., Lichtner, P., Farrer, M., Lincoln, S., Kachergus, J., Hulihan, M., Uitti, R. J., Calne, D. B., Stoessl, A. J., Pfeiffer, R. F., Patenge, N., Carbajal, I. C., Vieregge, P., Asmus, F., Muller-Myhsok, B., Dickson, D. W., Meitinger, T., Strom, T. M., Wszolek, Z. K., & Gasser, T. (2004). Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron, 44, 601–607.

    CAS  PubMed  Google Scholar 

  • Ziviani, E., & Whitworth, A. J. (2010). How could Parkin-mediated ubiquitination of mitofusin promote mitophagy? Autophagy, 6, 660.

    Google Scholar 

  • Ziviani, E., Tao, R. N., & Whitworth, A. J. (2010). Drosophila parkin requires PINK1 for mitochondrial translocation and ubiquitinates mitofusin. Proceedings of the National Academy of Sciences of the United States of America, 107, 5018–5023.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Martínez-Vicente .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Vila, M., Martínez-Vicente, M. (2014). Autophagic Pathways and Parkinson Disease. In: Kostrzewa, R. (eds) Handbook of Neurotoxicity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5836-4_15

Download citation

Publish with us

Policies and ethics