Skip to main content

Excitotoxicity in HIV Associated Neurocognitive Disorders

  • Reference work entry
  • First Online:
  • 2732 Accesses

Abstract

HAND (HIV associated neurocognitive disorders) represents a group of disorders, encompassing HIV associated asymptomatic neurocognitive impairment (ANI), HIV-associated mild neurocognitive disorders (MND), and HIV associated dementia (HAD). Even in the era of highly-active antiretroviral therapy, the prevalence of HAND is thought to be around 40 %, with milder forms making up a greater proportion of cases. HAND are clinically manifest as subcortical dementing processes; correlating with the preferential involvement of the basal ganglia, subcortical white matter, frontal lobe and hippocampus in neuropathological studies.

A central mechanism leading to synaptic dysfunction and loss, neuronal dysfunction and apoptosis in HAND is excitotoxicity mediated through the excessive activation of neuronal (and probably astrocytic) NMDA receptors (NMDAR). There is direct and indirect evidence that in HAND, increased neuronal NMDAR activation occurs due to elevated extracellular glutamate; a result of both increased presynaptic release and impaired clearance from the synaptic space. In addition, high levels of quinolinic acid (QUIN) (an NMDAR agonist) released by activated macrophages (and to a lesser extent microglia) lead to excessive NMDAR activation and excitotoxicity. Furthermore, HIV related proteins (particularly gp120 and Tat) can both activate the NMDAR, and augment receptor activation by glutamate and other agonists.

In vitro evidence supports the role of NMDAR antagonists in the prevention of neuronal loss induced by HIV related proteins. Clinical studies have demonstrated that the NMDAR antagonist memantine is safe and tolerable in HAND patients; so far clinical trials have failed to demonstrate a clinically beneficial effect of this therapy on neurocognitive function in HAND patients, however trials are ongoing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   549.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adle-Biassette, H., Chretien, F., Wingertsmann, L., Ereau, H., Scaravilli, F., Tardieu, M., & Gray, F. (1999). Neuronal apoptosis does not correlate with dementia in HIV infection but is related to microglial activation and axonal damage. Neuropathology and Applied Neurobiology, 25, 123–133.

    CAS  PubMed  Google Scholar 

  • Albini, A., Ferrini, S., Benelli, R., Sforzini, S., Giuncinglio, D., Aluigi, M., Proudfoot, A., Alouani, S., Wells, T., Mariani, G., Rabin, R., Farber, J., & Noonan, D. (1998). HIV-1 Tat protein mimicry of chemokines. Proceedings of the National Academy of Sciences of the United States of America, 95, 13153–13158.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alirezaei, M., Kiosses, W., Flynn, H., Brady, N., & Fox, H. (2008a). Disruption of neuronal autophagy by infected microglia results in neurodegeneration. PloS One, 3(8).

    Google Scholar 

  • Alirezaei, M., Kiosses, W., & Fox, H. S. (2008b). Decreased neuronal autophagy in HIV dementia: A mechanism of indirect neurotoxicity. Autophagy, 4(7), 963–966.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Annunziata, P. (2003). Blood–brain barrier changes during invasion of the CNS by HIV-1: Old and new insights into the mechanism. Journal of Neurology, 250, 901–906.

    CAS  PubMed  Google Scholar 

  • Antinori, A., Arendt, G., Becker, J. T., Brew, B. J., Byrd, D. A., Cherner, M., Clifford, D. B., Cinque, P., Epstein, L. G., Goodkin, K., Gisslen, M., Grant, I., Heaton, R. K., Joseph, J., Marder, K., Marra, C. M., McArthur, J. C., Nunn, M., Price, R. W., Pulliam, L., Robertson, K. R., Sacktor, N., Valcour, V., & Wojna, V. E. (2007). Updated research nosology for HIV-associated neurocognitive disorders. Neurology, 69, 1789–1799.

    CAS  PubMed  Google Scholar 

  • Bachis, A., Major, E., & Mocchetti, I. (2003). Brain-derived neurotrophic factor inhibits human immunodeficiency virus-1/gp120-mediated cerebellar granule cell death by preventing gp120 internalization. The Journal of Neuroscience, 23(13), 5715–5722.

    CAS  PubMed  Google Scholar 

  • Bell, J. (2004). An update on the neuropathology of HIV in the HAART era. Histopathology, 45, 549–559.

    CAS  PubMed  Google Scholar 

  • Bell, J., Brettle, R., Chiswick, A., & Simmonds, P. (1998). HIV encephalitis, proviral load and dementia in drug users and homosexuals with AIDS: Effect of neocortical involvement. Brain, 121, 2043–2052.

    PubMed  Google Scholar 

  • Benos, D., Hahn, B., Bubien, J., Ghosh, S., Mashburn, N., Chaikin, M., Shaw, G., & Benvenistes, E. (1994). Envelope glycoprotein gpl20 of human immunodeficiency virus type 1 alters ion transport in astrocytes: Implications for AIDS dementia complex. Proceedings of the National Academy of Sciences of the United States of America, 91, 494–498.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boissé, L., Gill, J., & Power, C. (2008). HIV infection of the central nervous system: Clinical features and neuropathogenesis. Neurologic Clinics, 26, 799–819.

    PubMed  Google Scholar 

  • Bol, S., Cobos-Jiménez, V., Kootstra, N., & van’t Wout, A. (2011). HIV-1 and the macrophage. Future Virology, 6(2), 187–208.

    CAS  Google Scholar 

  • Braidy, N., Grant, R., Adams, S., Brew, B., & Guillemin, G. (2009). Mechanism for quinolinic acid cytotoxicity in human astrocytes and neurons. Neurotoxicity Research, 16, 77–86.

    CAS  PubMed  Google Scholar 

  • Brew, B. (2004). Evidence for a change in AIDS dementia complex in the era of highly active antiretroviral therapy and the possibility of new forms of AIDS dementia complex. AIDS, 18(Suppl 1), S75–S78.

    CAS  PubMed  Google Scholar 

  • Brew, B., Rosenblum, M., Cronin, K., & Price, R. (1995). AIDS dementia complex and HIV-1 brain infection: Clinical-virological correlations. Annals of Neurology, 38, 563–570.

    CAS  PubMed  Google Scholar 

  • Brew, B., Halman, M., Catalan, J., Sacktor, N., Price, R., Brown, S., Atkinson, H., Clifford, D., Simpson, D., Torres, G., Hall, C., Power, C., Marder, K., Mc Arthur, J., Symonds, W., & Romero, C. (2007). Factors in AIDS dementia complex trial design: Results and lessons from the abacavir trial. PLoS Clinical Trials, 2(3), e13.

    PubMed Central  PubMed  Google Scholar 

  • Chatterton, J. E., Awobuluyi, M., Premkumar, L. S., Takahashi, H., Talantova, M., Shin, Y., Cui, J., Tu, S., Sevarino, K. A., Nakanishi, N., Tong, G., Lipton, S., & Zhang, D. (2002). Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature, 415(6873), 793–798.

    CAS  PubMed  Google Scholar 

  • Chauhan, A., Turchan, J., Pocernich, C., Bruce-Keller, A., Roth, S., Butterfield, D., Major, E., & Nath, A. (2003). Intracellular human immunodeficiency virus Tat expression in astrocytes promotes astrocyte survival but induces potent neurotoxicity at distant sites via axonal transport. The Journal of Biological Chemistry, 278(15), 13512–13519.

    CAS  PubMed  Google Scholar 

  • Churchill, M., Wesselingh, S., Cowley, M., Pardo, C., McArthur, J., Brew, B. J., & Gorry, P. (2009). Extensive astrocyte infection is prominent in human immunodeficiency virus–associated dementia. Annals of Neurology, 66(2), 253–258.

    PubMed  Google Scholar 

  • Cysique, L. A., & Brew, B. J. (2011). Prevalence of non-confounded HIV-associated neurocognitive impairment in the context of plasma HIV RNA suppression. Journal of Neurovirology, 17(2), 176–183.

    PubMed  Google Scholar 

  • Cysique, L., Maruff, P., & Brew, B. J. (2004). Prevalence and pattern of neuropsychological impairment in human immunodeficiency virus-infected/acquired immune deficiency syndrome (HIV/AIDS) patients across pre and post highly active antiretroviral therapy eras: A combined study of two cohorts. Journal of Neurovirology, 10(6), 350–357.

    PubMed  Google Scholar 

  • Cysique, L. A., Maruff, P., & Brew, B. J. (2006). Variable benefit in neuropsychological function in HIV-infected HAART-treated patients. Neurology, 66(9), 1447–1450.

    PubMed  Google Scholar 

  • Cysique, L. A., Waters, E. K., & Brew, B. J. (2011). Central nervous system antiretroviral efficacy in HIV infection: A qualitative and quantitative review and implications for future research. BMC Neurology, 11, 148.

    PubMed Central  PubMed  Google Scholar 

  • Dingledine, R., Borges, K., Bowie, D., & Traynelis, S. F. (1999). The glutamate receptor ion channels. Pharmacological Reviews, 51(1), 7–61.

    CAS  PubMed  Google Scholar 

  • Dore, G., Correll, P., Li, Y., Kaldor, J., Cooper, D., & Brew, B. (1999). Changes to the AIDS dementia complex in the era of highly active antiretroviral therapy. AIDS, 13, 1249–1253.

    CAS  PubMed  Google Scholar 

  • Dou, H., Birusingh, K., Faraci, J., Gorantla, S., Poluektova, L., Maggirwar, S., Dewhurst, S., Gelbard, H., & Gendelman, H. (2003). Neuroprotective activities of sodium valproate in a murine model of human immunodeficiency virus-1 encephalitis. The Journal of Neuroscience, 23(27), 9162–9170.

    CAS  PubMed  Google Scholar 

  • Dou, H., Ellison, B., Bradley, J., Kasiyanov, A., Poluektova, L., Xiong, H., Maggiwir, S., Dewhurst, S., Gelbard, H., & Gendelman, H. (2005). Neuroprotective mechanisms of lithium in murine human immunodeficiency virus-1 encephalitis. Journal of Neuroscience, 25(37), 8375–8385.

    CAS  PubMed  Google Scholar 

  • Ellis, R., Deutsch, R., Heaton, R., Marcotte, T., McCutchan, J., Nelson, J., Abramson, I., Thal, L., Atkinson, J., Wallace, M., & Grant, I. (1997). Neurocognitive impairment is an independent risk factor for death in HIV infection. Archives of Neurology, 54(4), 416–424.

    CAS  PubMed  Google Scholar 

  • Ernst, T., Jiang, C., Nakama, H., Buchthal, S., & Chang, L. (2010). Lower brain glutamate is associated with cognitive deficits in HIV patients: A new mechanism for HIV-associated neurocognitive disorder. Journal of Magnetic Resonance Imaging, 32, 1045–1053.

    PubMed Central  PubMed  Google Scholar 

  • Everall, I., Heaton, R., Marcotte, T., Ellis, R., McCutchan, J., Atkinson, J., Grant, I., Mallory, M., Masliah, E., & The HNRC Group. (1999). Cortical synaptic density is reduced in mild to moderate human immunodeficiency virus neurocognitive disorder. Brain Pathology, 9, 209–217.

    CAS  PubMed  Google Scholar 

  • Ferrarese, C., Aliprandi, A., Tremolizzo, L., Stanzani, L., De Micheli, A., Dolara, A., & Frattola, L. (2001). Increased glutamate in CSF and plasma of patients with HIV dementia. Neurology, 57(4), 671–675.

    CAS  PubMed  Google Scholar 

  • Ferris, M., Mactutus, C., & Booze, R. (2008). Neurotoxic profiles of HIV, psychostimulant drugs of abuse, and their concerted effect on the brain: Current status of dopamine system vulnerability in NeuroAIDS. Neuroscience and Biobehavioral Reviews, 32(5), 883–909.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Garden, G., Budd, S., Tsai, E., Hanson, L., Kaul, M., D’Emilia, D., Friedlander, R., Yuan, J., Masliah, E., & Lipton, S. (2002). Caspase cascades in human immunodeficiency virus-associated neurodegeneration. The Journal of Neuroscience, 22(10), 4015–4024.

    CAS  PubMed  Google Scholar 

  • Garden, G., Guo, W., Jayadev, S., Tun, C., Balcaitis, S., Choi, J., Montine, T., Möller, T., & Morrison, R. (2004). HIV associated neurodegeneration requires p53 in neurons and microglia. The FASEB Journal, 18(10), 1141–1143.

    CAS  Google Scholar 

  • Gonzalez-Scarano, F., & Martin-Garcia, J. (2005). The neuropathogenesis of AIDS. Nature, 5, 69–81.

    CAS  Google Scholar 

  • Gray, F., & Keohane, C. (2003). The neuropathology of HIV infection in the era of highly active antiretroviral therapy (HAART). Brain Pathology, 13, 79–83.

    PubMed  Google Scholar 

  • Gray, F., Chrétien, F., Vallat-Decouvelaere, A., & Scaravilli, F. (2003). The changing pattern of HIV neuropathology in the HAART era. Journal of Neuropathology and Experimental Neurology, 62(5), 429–440.

    PubMed  Google Scholar 

  • Guillemin, G. J., Kerr, S. J., & Brew, B. J. (2005a). Involvement of quinolinic acid in AIDS dementia complex. Neurotoxicity Research, 7(1–2), 103–123.

    CAS  PubMed  Google Scholar 

  • Guillemin, G., Wang, L., & Brew, B. (2005b). Quinolinic acid selectively induces apoptosis of human astrocytes: Potential role in AIDS dementia complex. Journal of Neuroinflammation, 2, 16.

    PubMed Central  PubMed  Google Scholar 

  • Haughey, N., Nath, A., Mattson, M., Slevin, J., & Geiger, J. (2001). HIV-1 Tat through phosphorylation of NMDA receptors potentiates glutamate excitotoxicity. Journal of Neurochemistry, 78, 457–467.

    CAS  PubMed  Google Scholar 

  • Heaton, R. K., Clifford, D. B., Franklin, D. R., Woods, S., Ake, C., Vaida, F., Ellis, R., Letendre, S., Marcotte, T., Atkinson, J., Rivera-Mindt, M., Vigil, O., Taylor, M., Collier, A., Marra, C., Gelman, B., McArthur, J., Morgello, S., Simpson, D., McCutchan, J., Abramson, I., Gamst, A., Fennema-Notestine, C., Jernigan, T., Wong, J., & Grant, I. (2010). HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy; the CHARTER Study. Neurology, 75, 2087–2096.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heyes, M., Brew, B., Martin, A., Price, R., Salazar, A., Sidtis, J., Yergey, J., Mouradian, M., Sadler, A., Keilp, J., Rubinow, D., & Markey, S. (1991). Quinolinic acid in cerebrospinal fluid and serum in HIV-1 infection: Relationship to clinical and neurological status. Annals of Neurology, 29(2), 202–209.

    CAS  PubMed  Google Scholar 

  • Heyes, M., Ellis, R., Ryan, L., Childers, M., Grant, I., Wolfson, T., Archibald, S., Jernigan, T., & The HNRC Group. (2001). Elevated cerebrospinal fluid quinolinic acid levels are associated with region-specific cerebral volume loss in HIV infection. Brain, 124, 1033–1042.

    CAS  PubMed  Google Scholar 

  • Hirsch, H., Kaufmann, G., Sendi, P., & Battegay, M. (2004). Immune reconstitution in HIV-infected patients. Clinical Infectious Diseases, 38, 1159–1166.

    PubMed  Google Scholar 

  • Ivey, N., MacLean, A., & Lackner, A. (2009). AIDS and the blood–brain barrier. Journal of Neurovirology, 15(2), 111–122.

    PubMed Central  PubMed  Google Scholar 

  • Kandanearatchi, A., & Brew, B. (2012). The kynurenine pathway and quinolinic acid: Pivotal roles in HIV associated neurocognitive disorders. FEBS Journal, 279(8), 1366–1374.

    CAS  PubMed  Google Scholar 

  • Kaul, M., Garden, G., & Lipton, S. (2001). Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature, 410, 988–994.

    CAS  PubMed  Google Scholar 

  • Kaul, M., Zheng, J., Okamoto, S., Gendelmen, H., & Lipton, S. (2005). HIV-1 infection and AIDS: Consequences for the central nervous system. Cell Death and Differentiation, 12, 878–892.

    CAS  PubMed  Google Scholar 

  • Kerr, S., Armati, P., Pemberton, L., Smythe, G., Tattam, B., & Brew, B. (1997). Kynurenine pathway inhibition reduces neurotoxicity of HIV-1 infected macrophages. Neurology, 49, 1671–1681.

    CAS  PubMed  Google Scholar 

  • Kerr, S., Armati, P., Guillemin, G., & Brew, B. (1998). Chronic exposure of human neurons to quinolinic acid results in neuronal changes consistent with AIDS dementia complex. AIDS, 12, 355–363.

    CAS  PubMed  Google Scholar 

  • Köhr, G. (2006). NMDA receptor function: Subunit composition versus spatial distribution. Cell and Tissue Research, 326, 439–446.

    PubMed  Google Scholar 

  • Langford, D., & Masliah, E. (2001). Crosstalk between components of the blood brain barrier and cells of the CNS in microglial activation in AIDS. Brain Pathology, 11, 306–312.

    CAS  PubMed  Google Scholar 

  • Lee, M., Ting, K., Adams, S., Brew, B., Chung, R., & Guillemin, G. (2010). Characterisation of the expression of NMDA receptors in human astrocytes. PloS One, 5(11), e14123.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Letendre, S., Woods, S., Ellis, R., Atkinson, J., Masliah, E., van den Brande, G., Durelle, J., Grant, I., Everall, I., & The HNRC Group. (2006). Lithium improves HIV-associated neurocognitive impairment. AIDS, 20, 1885–1888.

    CAS  PubMed  Google Scholar 

  • Li, W., Galey, D., Mattson, M., & Nath, A. (2005). Molecular and cellular mechanisms of neuronal cell death in HIV dementia. Neurotoxicity Research, 8(1–2), 119–134.

    CAS  PubMed  Google Scholar 

  • Li, W., Li, G., Steiner, J., & Nath, A. (2009). Role of Tat protein in HIV neuropathogenesis. Neurotoxicity Research, 16, 205–220.

    CAS  PubMed  Google Scholar 

  • Lindl, K., Marks, D., Kolson, D., & Jordan-Sciutto, K. (2010). HIV-associated neurocognitive disorderd pathogenesis and therapeutic opportunities. Journal of Neuroimmune Pharmacology, 5, 294–309.

    PubMed Central  PubMed  Google Scholar 

  • Lipton, S. (1992). Memantine prevents HIV coat protein- induced neuronal injury in vitro. Neurology, 42, 1403–1405.

    CAS  PubMed  Google Scholar 

  • Lipton, S. (2004). Failures and successes of NMDA receptor antagonists: Molecular basis for the use of open-channel blockers like memantine in the treatment of acute and chronic neurologic insults. NeuroRx: The Journal of the American Society for Experimental NeuroTherapeutics, 1, 101–110.

    Google Scholar 

  • Lipton, S., Yeh, M., & Dreyer, E. (1994). Update on current models of HIV-related neuronal injury: Platelet activating factor, arachidonic acid and nitric oxide. Advances in Neuroimmunology, 4, 181–188.

    CAS  PubMed  Google Scholar 

  • Masliah, E., DeTeresa, R., Mallory, M., & Hansen, L. (2000). Changes in pathological findings at autopsy in AIDS cases for the last 15 years. AIDS, 14, 69–74.

    CAS  PubMed  Google Scholar 

  • Mattson, M., Haughey, N., & Nath, A. (2005). Cell death in HIV dementia. Cell Death and Differentiation, 12, 893–904.

    CAS  PubMed  Google Scholar 

  • McArthur, J., Brew, B., & Nath, A. (2005). Neurological complications of HIV infection. Lancet Neurology, 4, 543–555.

    PubMed  Google Scholar 

  • Meucci, O., & Miller, R. (1996). gp120-induced neurotoxicity in hippocampal pyramidal neuron cultures: Protective action of TGF-β1. The Journal of Neuroscience, 16(13), 4080–4088.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miller, B., Sarantis, M., Traynelis, S., & Attwell, D. (1992). Potentiation of NMDA receptor currents by arachidonic acid. Nature, 355, 722–725.

    CAS  PubMed  Google Scholar 

  • Minghetti, L., Visentin, S., Patrizio, M., Franchini, L., Ajmone-Cat, M., & Levi, G. (2004). Multiple actions of the human immunodeficiency virus type-1 Tat protein on microglial cell functions. Neurochemical Research, 29(5), 965–978.

    CAS  PubMed  Google Scholar 

  • Moore, D., Masliah, E., Rippeth, J., Gonzalez, R., Carey, C., Cherner, M., Ellis, R., Achim, C., Marcotte, T., Heaton, R., Grant, I., & The HNRC group. (2006). Cortical and subcortical neurodegeneration is associated with HIV neurocognitive impairment. AIDS, 20, 879–887.

    PubMed  Google Scholar 

  • Mordelet, E., Kissa, K., Cressant, A., Gray, F., Ozden, S., Vidal, C., Charneau, P., & Granon, S. (2004). Histopathological and cognitive defect induced by Nef in the brain. The FASEB Journal, 18, 1851–1861.

    CAS  Google Scholar 

  • Nath, A. (2002). Human immunodeficiency virus (HIV) proteins in neuropathogenesis of HIV dementia. The Journal of Infectious Diseases, 186(Suppl 2), S193–S198.

    CAS  PubMed  Google Scholar 

  • Nath, A., Haughey, N., Jones, M., Anderson, C., Bell, J., & Geiger, J. (2000). Synergistic neurotoxicity by human immunodeficiency virus proteins tat and gp120: Protection by memantine. Annals of Neurology, 47, 186–194.

    CAS  PubMed  Google Scholar 

  • Nguyen, T., Soukup, V., & Gelman, B. (2010). Persistent hijacking of brain proteasomes in HIV-associated dementia. The American Journal of Pathology, 176(2), 893–902.

    CAS  PubMed Central  PubMed  Google Scholar 

  • O’Donnell, L., Agrawal, A., Jordan-Sciutto, K., Dichter, M., Lynch, D., & Kolson, D. (2006). Human immunodeficiency virus (HIV)-induced neurotoxicity: Roles for the NMDA receptor subtypes 2A and 2B and the calcium-activated protease Calpain by a CSF-derived HIV-1 strain. The Journal of Neuroscience, 26(3), 981–990.

    PubMed  Google Scholar 

  • Owe-Young, R., Webster, N., Mukhtar, M., Pomerantz, R., Smythe, G., Walker, D., Armati, P., Crowe, S., & Brew, B. (2008). Kynurenine pathway metabolism in human blood–brain-barrier cells: Implications for immune tolerance and neurotoxicity. Journal of Neurochemistry, 105, 1346–1357.

    CAS  PubMed  Google Scholar 

  • Patel, C., Mukhtar, M., & Pomerantz, R. (2000). Human immunodeficiency virus type 1 Vpr induces apoptosis in human neuronal cells. Journal of Virology, 74(20), 9717–9726.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Patton, H., Zhou, Z., Bubien, J., Benveniste, E., & Benos, D. (2000). gp120-induced alterations of human astrocyte function: Na1/H1 exchange, K1 conductance, and glutamate flux. American Journal of Physiology. Cell Physiology, 279, C700–C708.

    CAS  PubMed  Google Scholar 

  • Persidsky, Y., Zheng, J., Miller, D., & Gendelman, H. (2000). Mononuclear phagocytes mediate blood–brain barrier compromise and neuronal injury during HIV-1-associated dementia. Journal of Leukocyte Biology, 68, 413–422.

    CAS  PubMed  Google Scholar 

  • Petito, C. (2003). Neuropathology of acquired immunodeficiency syndrome. In Principles and practice of neuropathology (2nd ed.). Oxford: Oxford University Press.

    Google Scholar 

  • Piller, S., Jans, P., Gage, P., & Jans, D. (1998). Extracellular HIV-1 virus protein R causes a large inward current and cell death in cultured hippocampal neurons: Implications for AIDS pathology. Proceedings of the National Academy of Sciences of the United States of America, 95, 4595–4600.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Piller, S., Ewart, G., Jans, D., Gage, P., & Cox, G. (1999). The amino-terminal region of Vpr from human immunodeficiency virus type 1 forms ion channels and kills neurons. Journal of Virology, 73(5), 4230–4238.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Polazzi, E., Levi, G., & Minghetti, L. (1999). Human immunodeficiency virus type 1 Tat protein stimulates inducible nitric oxide synthase expression and nitric oxide production in microglial cultures. Journal of Neuropathology and Experimental Neurology, 58(8), 825–831.

    CAS  PubMed  Google Scholar 

  • Priestley, T., Laughton, P., Myers, J., Le Bourdellés, B., Kerby, J., & Whiting, P. J. (1995). Pharmacological properties of recombinant human N-methyl-d-aspartate receptors comprising NR1a/NR2A and NR1a/NR2B subunit assemblies expressed in permanently transfected mouse fibroblast cells. Molecular Pharmacology, 48(5), 841–848.

    CAS  PubMed  Google Scholar 

  • Reitz, M., & Gallo, R. (2009). Human Immunodeficiency Viruses. In G. L. Mandell, J. E. Bennett, R. Dolin, & G. V. Kelvin (Eds.), Mandell, Douglas and Bennett’s principles and practice of infectious diseases (7th ed.). Philadelphia, PA: Churchill Livingston.

    Google Scholar 

  • Robertson, K. R., Smurzynski, M., Parsons, T. D., Wu, K., Bosch, R. J., Wu, J., McArthur, J. C., Collier, A. C., Evans, S. R., & Ellis, R. J. (2007). The prevalence and incidence of neurocognitive impairment in the HAART era. AIDS, 21, 1915–1921.

    PubMed  Google Scholar 

  • Rumbaugh, J., & Nath, A. (2006). Developments in HIV neuropathogenesis. Current Pharmaceutical Design, 12, 1023–1044.

    CAS  PubMed  Google Scholar 

  • Sacktor, N., Lyles, R., Skolasky, R., Kleeberger, C., Selnes, O., Miller, E., Becker, J., Cohen, B., McArthur, J., & Multicenter AIDS Cohort Study. (2001). HIV associated neurologic disease incidence changes: Multicenter AIDS Cohort Study, 1990–1998. Neurology, 56(2), 257–260.

    CAS  PubMed  Google Scholar 

  • Schifitto, G., Navia, B., Yiannoutsos, C., Marra, C., Chang, L., Ernst, T., Jarvik, J., Miller, E., Singer, E., Ellis, R., Kolson, D., Simpson, D., Nath, A., Berger, J., Shriver, S., Millar, L., Colquhoun, D., Lenkinski, R., Gonzalez, G., Lipton, S., & The Adult AIDS Clinical Trial Group (ACTG) 301 and 700 Teams and the HIV MRS Consortium. (2007). Memantine and HIV-associated cognitive impairment: A neuropsychological and proton magnetic resonance spectroscopy study. AIDS, 21, 1877–1886.

    CAS  PubMed  Google Scholar 

  • Schifitto, G., Zhong, J., Gill, D., Peterson, D., Gaugh, M., Zhu, T., Tivarus, M., Cruttenden, K., Maggirwar, S., Gendelman, H., Dewhurst, S., & Gelbard, H. (2009). Lithium therapy for human immunodeficiency virus type-1 associated neurocognitive impairment. Journal of Neurovirology, 15, 176–186.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schwarze, S., Ho, A., Vocero-Akbani, A., & Dowdy, S. (1999). In vivo protein transduction: Delivery of a biologically active protein into the mouse. Science, 285, 1569–1572.

    CAS  PubMed  Google Scholar 

  • Sheldon, A., & Robinson, M. (2007). The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochemistry International, 51(6–7), 333–355.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shin, A., Kim, H., & Thayer, S. (2011). Subtype selective NMDA receptor antagonists induce recovery of synapses lost following exposure to HIV-1 Tat. British Journal of Pharmacology, 166(3), 1002–1017.

    Google Scholar 

  • Simioni, S., Cavassini, M., Annoni, J., Abraham, A. R., Bourquin, I., Schiffer, V., Calmy, A., Chave, J., Giacobini, E., Hirschel, B., & Du Pasquier, R. A. (2010). Cognitive dysfunction in HIV patients despite long-standing suppression of viremia. AIDS, 24, 1243–1250.

    PubMed  Google Scholar 

  • Smith, D., Guillemin, G., Pemberton, L., Kerr, S., Nath, A., Smythe, G., & Brew, B. (2001). Quinolinic acid is produced by macrophages stimulated by platelet activating factor, Nef and Tat. Journal of Neurovirology, 7, 56–60.

    CAS  PubMed  Google Scholar 

  • Sofroniew, M., & Vinters, H. (2010). Astrocytes: Biology and pathology. Acta Neuropathologica, 119, 7–35.

    PubMed Central  PubMed  Google Scholar 

  • Song, L., Nath, A., Geiger, J., Moore, A., & Hochman, S. (2003). Human immunodeficiency virus type-1 Tat protein directly activates neuronal N-methyl-D-aspartate receptors at an allosteric zinc-sensitive site. Journal of Neurovirology, 9, 399–403.

    CAS  PubMed  Google Scholar 

  • Staekenborg, S. S., van der Flier, W. M., van Straaten, E. C., Lane, R., Barkhof, F., & Scheltens, P. (2008). Neurological signs in relation to type of cerebrovascular disease in vascular dementia. Stroke, 39, 317–322.

    PubMed  Google Scholar 

  • Tavares, R., Tasca, C., Santos, C., Wajner, M., Souza, M., & Dutra-Filho, C. (2000). Quinolinic acid inhibits glutamate uptake into synaptic vesicles from rat brain. Neuroreport, 11, 249–253.

    CAS  PubMed  Google Scholar 

  • Thompson, K., Churchill, M., Gorry, P., Sterjovski, J., Oelrichs, R., Wesselingh, S., & McLean, C. (2004). Astrocyte specific viral strains in HIV dementia. Annals of Neurology, 56, 873–877.

    CAS  PubMed  Google Scholar 

  • Ting, K., Brew, B., & Guillemin, G. (2009). Effect of quinolinic acid on human astrocytes morphology functions: Implications in Alzheimer’s disease. Journal of Neuroinflammation, 6, 36.

    PubMed Central  PubMed  Google Scholar 

  • Toborek, M., Lee, Y., Pu, H., Malecki, A., Flora, G., Garrido, R., Hennig, B., Bauer, H., & Nath, A. (2003). HIV-Tat protein induces oxidative and inflammatory pathways in brain endothelium. Journal of Neurochemistry, 84, 169–179.

    CAS  PubMed  Google Scholar 

  • Toggas, S., Masliah, E., & Mucke, L. (1996). Prevention of HIV-1 gp120-induced neuronal damage in the central nervous system of transgenic mice by the NMDA receptor antagonist memantine. Brain Research, 706, 303–307.

    CAS  PubMed  Google Scholar 

  • Trillo-Pazos, G., McFarlane-Abdulla, E., Campbell, I., Pilkington, G., & Everall, I. (2000). Recombinant nef HIV-IIIB protein is toxic to human neurons in culture. Brain Research, 864(2), 315–326.

    CAS  PubMed  Google Scholar 

  • Valle, M., Price, R., Nilsson, A., Heyes, D., & Verotta, D. (2004). CSF quinolinic acid levels are determined by local HIV infection: Cross-sectional analysis and modelling of dynamics following antiretroviral therapy. Brain, 127, 1047–1060.

    PubMed  Google Scholar 

  • Wallace, D. (2006). HIV neurotoxicity: Potential therapeutic interventions. Journal of Biomedicine and Biotechnology, 2006, 1–10.

    Google Scholar 

  • Wang, Z., Trillo-Pazos, G., Kim, S., Canki, M., Morgello, S., Sharer, L., Gelbard, H., Su, Z., Kang, D., Brooks, A., Fisher, P., & Volsky, D. (2004). Effects of human immunodeficiency virus type 1 on astrocyte gene expression and function: Potential role in neuropathogenesis. Journal of Neurovirology, 10(Suppl 1), 25–32.

    PubMed  Google Scholar 

  • Werner, T., Ferroni, S., Saermark, T., Brack-Werner, R., Banati, R., Mager, R., Steinaa, L., Kreutzberg, G., & Erfle, V. (1991). HIV-1 Nef protein exhibits structural and functional similarity to scorpion peptides interacting with K+ channels. AIDS, 5(11), 1301–1308.

    CAS  PubMed  Google Scholar 

  • Whetsell, W., & Schwarcz, R. (1989). Prolonged exposure to submicromolar concentrations of quinolinic acid causes excitotoxic damage in organotypic cultures of rat corticostriatal system. Neuroscience Letters, 97(3), 271–275.

    CAS  PubMed  Google Scholar 

  • Zhao, Y., Navia, B., Marra, C., Singer, E., Chang, L., Berger, J., Ellis, R., Kolson, D., Simpson, D., Miller, E., Lipton, S., Evans, S., Schifitto, G., & The Adult AIDS Clinical Trial Group (ACTC) 301 Team. (2010). Memantine for AIDS dementia complex: Open label report of ACTG 301. HIV Clinical Trials, 11(1), 59–67.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce J. Brew .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Cruse, B., Brew, B.J. (2014). Excitotoxicity in HIV Associated Neurocognitive Disorders. In: Kostrzewa, R. (eds) Handbook of Neurotoxicity. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5836-4_143

Download citation

Publish with us

Policies and ethics